Chemistry of Natural Compounds

, Volume 49, Issue 5, pp 940–942 | Cite as

Two Galloylated Flavonoids as Antioxidants in Rosa gallica Petals

  • Sarangowa Ochir
  • Takehiro Yuki
  • Tsutomu Kanazawa
  • Makoto Nishizawa
  • Takashi Yamagishi

In Xinjiang Province, the westernmost part of China, the Uygur people have a custom to take herbal tea made from the blossom and petals of a species of rose for the treatment of diabetes [1]. The Chinese name of the rose is “Mei-gui,” which is cultivated around the Tarim Basin in Xinjiang Province. The scientific name of the rose has been assigned as Rosa rugosa, but many of its characteristics are different from R. rugosa, a rose naturally grown in the coastal area of northeast Asia including Japan, Korea, and China. Our studies on the rose using morphological, phylogenetic, and phytochemical methods revealed that the rose was identical to Rosa gallica [2]. In phytochemical studies, the contents of flavonol glycosides in R. gallica were higher than those in other species of the genus Rosa called “Mei-gui” in China, Korea, and Japan. In the course of our studies on the flavonoid composition in the petals of R. gallica, we isolated two galloylated flavonol glucosides. In this paper, we...


MeOH Quercetin DPPH Kaempferol CD3OD 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. A. Arzani, Mizani Tib, Xinjiang Science and Healthy Publication: Xinjinang, China, 2002, p. 411, 421.Google Scholar
  2. 2.
    S. Ochir, K. Ishii, B-J. Park, T. Matsuta, M. Nishizawa, T. Kanazawa, M. Funaki, and T. Yamagishi, J. Nat. Med., 64, 409 (2010).PubMedCrossRefGoogle Scholar
  3. 3.
    Z-P. Xiao, H-K. Wu, T. Wu, H. Shi, B. Hang, and H-A. Aisa, J. Nat. Prod., 42, 736 (2006).Google Scholar
  4. 4.
    X-F. Zhang, P-T. Thuong, W-Y. Jin, N-D. Su, D-E. Sok, K-H. Bae, and S-S. Kang, Arch. Pharm. Res., 28, 22 (2005).PubMedCrossRefGoogle Scholar
  5. 5.
    G. Pakulski and J. Budzianowski, Planta Med., 62, 95 (1996).PubMedCrossRefGoogle Scholar
  6. 6.
    Y-L. Xue, T. Miyakawa, Y. Hayashi, K. Okamoto, F-Y. Hu, N. Mitani, K. Furihata, Y. Sawano, and M. Tanokura, J. Agric. Food Chem., 59, 6011 (2011).PubMedCrossRefGoogle Scholar
  7. 7.
    K. Kameda, T. Takaku, H. Okuda, and Y. Kimura, J. Nat. Prod., 50, 680 (1987).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Sohretoglu, M. K. Sakar, S. A. Sabuncuoglu, H. Ozgunes, and O. Sterner, Turk. J. Chem., 33, 685 (2009).Google Scholar
  9. 9.
    T. G. Kulpina, G. I. Vysochina, and T. P. Berisovskaya, Khim. Prir. Soedin., 511 (1986).Google Scholar
  10. 10.
    F. Shahidi and P. K. J. Wanasundara, Crit. Rev. Food Sci. Nutr., 32, 67 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    J. A. Scott and G. L. King, Ann. N.Y. Acad. Sci., 1031, 204 (2004).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sarangowa Ochir
    • 1
  • Takehiro Yuki
    • 1
  • Tsutomu Kanazawa
    • 2
  • Makoto Nishizawa
    • 3
  • Takashi Yamagishi
    • 1
  1. 1.Kitami Institute of TechnologyKitamiJapan
  2. 2.Harunire Bio Laboratory Co., Ltd.KitamiJapan
  3. 3.Faculty of Bio-IndustryTokyo University of AgricultureAbashiriJapan

Personalised recommendations