Chemistry of Natural Compounds

, Volume 49, Issue 2, pp 345–346 | Cite as

Glucoside of taxifolin and (+)-pinitol from Pinus sylvestris

  • G. A. Usmanova
  • E. Kh. Botirov

Common pine (Pinus sylvestris L.) is widely distributed in all forested regions of Siberia and comprises the principal mass of Siberian forests [1]. Pine needles are used as an antiscorbutic agent. Pine buds are used for inhalation for inflammatory diseases of the upper respiratory tract. Pine is rich in ascorbic acid (up to 0.3%) and contains up to 5% tanning agents and up to 1.3% essential oil, the composition of which includes pinene, borneol, limonene, bornylacetate, cadinene, and other terpenes in addition to sterols, terpenoids, alkylated phenols, phenolic acids, alcohols, aldehydes, ketones, stilbenes, lignans, and other aromatic compounds [1, 2, 7, 8, 9]. Needles yielded kaempferol; quercetin; quercetin-3-O-glucoside; sylpin; derivatives of kaempferol, quercetin, isorhamnetin, and taxifolin 3-O-glucosides acylated on the carbohydrate part; taxifolin and eriodictyol 3′-O-β-D-glucopyranosides; and other flavonoids [3, 4, 5, 6, 7, 8, 9].

We studied chemical components of P....


Quercetin Kaempferol Isorhamnetin Borneol Dihydroquercetin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. V. Pobedinskii, Pine [in Russian], Lesnaya Promyshlennost’, Moscow, 1979, 125 pp.Google Scholar
  2. 2.
    T. A. Goncharova, Encyclopedia of Medicinal Plants [in Russian], Vol. 2, Izdatel’skii Dom MSP, Moscow, 2004, p. 28.Google Scholar
  3. 3.
    S. A. Medvedeva, S. Z. Ivanova, N. A. Tyukavkina, and G. G. Zapesochnaya, Khim. Prir. Soedin., 650 (1977).Google Scholar
  4. 4.
    G. G. Zapesochnaya, S. Z. Ivanova, S. A. Medvedeva, and N. A. Tyukavkina, Khim. Prir. Soedin., 193 (1978).Google Scholar
  5. 5.
    G. G. Zapesochnaya, S. Z. Ivanova, S. A. Medvedeva, and N. A. Tyukavkina, Khim. Prir. Soedin., 332 (1978).Google Scholar
  6. 6.
    S. Z. Ivanova, G. G. Zapesochnaya, N. A. Tyukavkina, and S. A. Medvedeva, Khim. Prir. Soedin., 399 (1978).Google Scholar
  7. 7.
    W. Oleszek, A. Stochmal, P. Karolewski, A. M. Simonet, F. A. Macias, and A. Tava, Biochem. Syst. Ecol., 30, 1011 (2002).CrossRefGoogle Scholar
  8. 8.
    K. Sunnerheim-Sjoberg, G. Eriksson, L. N. Lundgren, and O. Theander, Scand. J. Forest Res., 7, 325 (1992).CrossRefGoogle Scholar
  9. 9.
    T. Popoff and O. Theander, Acta Chem. Scand., Ser. B, 31, 329 (1977).CrossRefGoogle Scholar
  10. 10.
    K. R. Markham, Techniques of Flavonoid Identification, London, 1982, 113 pp.Google Scholar
  11. 11.
    Y. L. Li, J. Li, N. L. Wang, and X. S. Yao, Molecules, 13, 1931 (2008).PubMedCrossRefGoogle Scholar
  12. 12.
    X. Xu, H. Xie, J. Hao, Y. Jiang, and X. Wei, J. Agric. Food Chem., 59, 1205 (2011).PubMedCrossRefGoogle Scholar
  13. 13.
    A. A. Drenin, E. Kh. Botirov, and Yu. P. Turov, Khim. Rastit. Syr’ya, No. 2, 53 (2010).Google Scholar
  14. 14.
    L. N. Misra and S. A. Siddiqi, Curr. Sci., 87, 1507 (2004).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Surgut State University, Khanty-Mansi Autonomous Okrug-Yugry (KMAO-Yugry)SurgutRussia

Personalised recommendations