Advertisement

Chemistry of Natural Compounds

, Volume 48, Issue 5, pp 853–859 | Cite as

A new arylsulfatase from the marine mollusk Turbo chrysostomus

  • M. S. Pesentseva
  • V. V. Sova
  • Al. S. Sil′chenko
  • A. A. Kicha
  • Ar. S. Sil′chenko
  • T. Haertle
  • T. N. Zvyagintseva
Article

A new arylsulfatase (EC 3.1.6.1) was isolated from the liver of the marine mollusk Turbo chrysostomus. The enzyme catalyzed hydrolysis of potassium p-nitrophenylsulfate, did not affect natural fucoidan, and catalyzed cleavage of sulphate in the C4 position of xylose included in carbohydrate chains of holothurian triterpene glycosides. Halistanol sulphate and glycosides from starfish that contained sulfates in the aglycon part of the molecule inhibited the activity of the arylsulfatase. Several holothurian glycosides in small concentrations (3.5–8 × 10–10 M) increased the enzyme activity. The arylsulfatase activity was maximal at pH 7. Its molecular weight was 35 kDa according to gel-filtration. The Michaelis constant (KM) for hydrolysis of p-nitrophenylsulfate was 10 mM. The inactivation half-life of the enzyme was 15 min at 55°C.

Keywords

arylsulfatase marine mollusks Turbo chrysostomus triterpene glycosides sulfated steroidal glycosides 

Notes

Acknowledgment

This work was supported by the program of the Russian Academy of Science “Molecular and Cellular Biology”.

References

  1. 1.
    D. P. Wright, D. I. Rosendale, and A. M. Robertson, FEMS Microbiol. Lett., 190, 73 (2000).PubMedCrossRefGoogle Scholar
  2. 2.
    Q. Yang, L. M. Anderer, and R. C. Anderer, Dev. Biol., 135, 53 (1989).PubMedCrossRefGoogle Scholar
  3. 3.
    A. Hallman and M. Sumper, Eur. J. Biochem., 221, 143 (1994).CrossRefGoogle Scholar
  4. 4.
    G. Parenti, G. Meroni, and A. Ballabio, Curr. Opin. Genet. Dev., 7, 386 (1997).PubMedCrossRefGoogle Scholar
  5. 5.
    P. F. Lloyd and K. O. Lloyd, Nature, 199, 287 (1963).CrossRefGoogle Scholar
  6. 6.
    N. M. Thanassi and H. I. Nakada, Arch. Biochem. Biophys., 118, 172 (1967).CrossRefGoogle Scholar
  7. 7.
    K. Kitamura, M. Matsuo, and T. Yasui, Biosci. Biotechnol. Biochem., 56, 490 (1992).CrossRefGoogle Scholar
  8. 8.
    S. Agogbua, E. Anosike, and E. Ugochukwu, Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol., 59, 169 (1978).Google Scholar
  9. 9.
    H. Banna, Histochem. J., 12, 145 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    E. Corner, J. Mar. Biol. Assoc. U. K., 39, 51 (1960).CrossRefGoogle Scholar
  11. 11.
    T. Selmer, A. Hallman, B. Schmidt, M. Sumper, and K. von Figura, Eur. J. Biochem., 238, 341 (1996).PubMedCrossRefGoogle Scholar
  12. 12.
    B. Schmidt, T. Selmer, F. Ingendoh, and K. von Figura, Cell, 82, 271 (1995).PubMedCrossRefGoogle Scholar
  13. 13.
    C. S. Bond, P. R. Clements, S. J. Ashby, C. A. Collyer, S. J. Harrop, J. J. Hopwood, and J. M. Guss, Structure, 5, 277 (1997).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Lukatela, N. Krauss, K. Theis, T. Selmer, V. Gieselmann, K. von Figura, and W. Saenger, Biochemistry, 37, 3654 (1998).PubMedCrossRefGoogle Scholar
  15. 15.
    A. B. Roy, Anal. Biochem., 165, 1 (1987).PubMedCrossRefGoogle Scholar
  16. 16.
    H. Hatanaka, Y. Ogawa, and F. Egami, Biochem. J., 159, 445 (1979).Google Scholar
  17. 17.
    R. Daniel, O. Berteau, L. Chevolot, A. Varenne, P. Gareil, and R. Goasdoue, Eur. J. Biochem., 268, 5617 (2001).PubMedCrossRefGoogle Scholar
  18. 18.
    D. C. Spaulding and D. E. Morse, J. Comp. Physiol., B, 161, 498 (1991).Google Scholar
  19. 19.
    T. Ueki, Y. Sawada, Y. Fukagawa, and T. Oki, Biosci. Biotechnol. Biochem., 59, 1062 (1995).PubMedCrossRefGoogle Scholar
  20. 20.
    W. Knoess and K.-W. Glombitza, Phytochemistry, 32, 1119 (1993).CrossRefGoogle Scholar
  21. 21.
    V. Descamps, S. Colin, M. Lahaye, M. Jam, C. Richard, P. Potin, T. Barberon, J.-C. Yvin, and B. Kloareg, Mar. Biotechnol., 8, 27 (2006).PubMedCrossRefGoogle Scholar
  22. 22.
    S. D. Anastyuk, N. M. Shevchenko, P. S. Dmitrenok, and T. N. Zvyagintseva, Carbohydr. Res., 346, 2975 (2011).PubMedCrossRefGoogle Scholar
  23. 23.
    I. Yu. Bakunina, V. V. Sova, L. A. Elyakova, T. N. Makar′eva, V. A. Stonik, E. A. Permyakov, and V. I. Emel′yanenko, Biokhimiya, 56 (8), 1397 (1991).Google Scholar
  24. 24.
    M. I. Kusaykin, M. S. Pesentseva, A. S. Sil′chemko, S. A. Avilov, V. V. Sova, T. N. Zvyagintseva, and V. A. Stonik, Bioorg. Khim., 32 (1), 71 (2006).Google Scholar
  25. 25.
    N. V. Ivanchina, T. V. Malyrenko, A. A. Kicha, A. I. Kalinovsky, P. S. Dmitrenok, and S. P. Ermakova, Bioorg. Khim., 37 (4), 559 (2011).PubMedGoogle Scholar
  26. 26.
    N. Fusetani, Y. Kato, K. Hashimoto, T. Komori, Y. Itakura, and T. Kawasaki, J. Nat. Prod., 47, 995 (1984).CrossRefGoogle Scholar
  27. 27.
    V. I. Kalinin, A. S. Silchenko, S. A. Avilov, V. A. Stonik, and A. V. Smirnov, Phytochem. Rev., 4 (2–3), 221 (2005).CrossRefGoogle Scholar
  28. 28.
    A. S. Silchenko, S. A. Avilov, V. I. Kalinin, A. I. Kalinovsky, P. S. Dmitrenok, S. N. Fedorov, V. G. Stepanov, Z. Dong, and V. A. Stonik, J. Nat. Prod., 71 (3), 351 (2008).PubMedCrossRefGoogle Scholar
  29. 29.
    A. S. Silchenko, A. I. Kalinovsky, S. A. Avilov, P. V. Andryjaschenko, P. S. Dmitrenok, E. A. Yurchenko, and V. I. Kalinin, Nat. Prod. Commun., 6, 1075 (2011).PubMedGoogle Scholar
  30. 30.
    A. A. Kicha, A. I. Kalinovsky, E. V. Levina, V. A. Stonik, and G. B. Elyakov, Tetrahedron Lett., 24 (36), 3893 (1983).CrossRefGoogle Scholar
  31. 31.
    A. A. Kicha, N. V. Ivanchina, A. I. Kalinovsky, P. S. Dmitrenok, E. V. Sokolova, and I. G. Agafonova, Khim. Prir. Soedin., 64 (2007).Google Scholar
  32. 32.
    I. Kitagawa and M. Kobayashi, Chem. Pharm. Bull., 26 (6), 1864 (1978).CrossRefGoogle Scholar
  33. 33.
    M. Bradford, Anal. Biochem., 72 (1–2), 248 (1976).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. S. Pesentseva
    • 1
  • V. V. Sova
    • 1
  • Al. S. Sil′chenko
    • 1
  • A. A. Kicha
    • 1
  • Ar. S. Sil′chenko
    • 1
  • T. Haertle
    • 2
  • T. N. Zvyagintseva
    • 1
  1. 1.G. B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-East BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Laboratoire d’Etude des Interactions des Molecules AlimentairesInstitut National de la Recherche AgronomiqueNantesFrance

Personalised recommendations