Advertisement

Chemistry of Natural Compounds

, Volume 47, Issue 1, pp 96–97 | Cite as

Compositional heterogeneity of sulfated polysaccharides synthesized by the brown alga Costaria costata

  • T. I. Imbs
  • N. M. Shevchenko
  • T. L. Semenova
  • S. V. Sukhoverkhov
  • T. N. Zvyagintseva
Brief Communications

Brown algae contain sulfated polysaccharides, fucoidans, that exhibit various biological activities [1]. The variety of activities exhibited by fucoidans is related to their structural variations. It was shown that species of a single family (genus) of brown algae can contain sulfated polysaccharides that differ in structure and biological activity [2]. Correspondingly, several different fractions of fucoidans can be isolated from a single species [3,4]. Our goal was to determine the composition of sulfated polysaccharides synthesized by the brown alga Costaria costata [Turn.] Saund (Laminariaceae), which is broadly distributed in seas of the Russian Far East.

Polysaccharides were isolated by acid extraction at room temperature [5] from specimens of C. costata collected in July in Troits Bay (Sea of Japan). The polysaccharide fraction was separated into fucoidan (F) and laminaran by chromatography over the hydrophobic sorbent Polikhrom-1 [5]. The monosaccharide composition of the...

Keywords

Monosaccharide Brown Alga Fucose Uronic Acid Sulfated Polysaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The work was supported by the RAS Presidium Basic Research Program “Molecular and Cellular Biology”.

References

  1. 1.
    A. I. Usov and M. I. Bilan, Usp. Khim., 78, No. 8, 846 (2009).Google Scholar
  2. 2.
    A. Cumashi, N. A. Ushakova, M. E. Preobrazhenskaya, A. D’Incecco, A. Piccoli, L. Totani, N. Tinari, G. E. Morozevich, A. E. Berman, M. I. Bilan, A. I. Usov, N. E. Ustyuzhanina, A. A. Grachev, C. J. Sanderson, M. Kelly, G. A. Rabinovich, S. Iacobelli, and N. E. Nifantiev, Glycobiology, 17, 541 (2007).PubMedCrossRefGoogle Scholar
  3. 3.
    T. Nishino, C. Nishioka, H. Ura, and T. Nagumo, Carbohydr. Res., 255, 213 (1994).PubMedCrossRefGoogle Scholar
  4. 4.
    N. M. A. Ponce, C. A. Pujol, E. B. Damonte, M. L. Flores, and C. A. Stortz, Carbohydr. Res., 338, 153 (2003).PubMedCrossRefGoogle Scholar
  5. 5.
    T. I. Imbs, N. M. Shevchenko, S. V. Sukhoverkhov, T. L. Semenova, A. V. Skriptsova, and T. N. Zvyagintseva, Khim. Prir. Soedin., 661 (2009).Google Scholar
  6. 6.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. I. Randall, J. Biol. Chem., 193, 265 (1951).PubMedGoogle Scholar
  7. 7.
    K. S. Dodgson, Biochem. J., 78, 312 (1961).PubMedGoogle Scholar
  8. 8.
    N. Blumenkrantz and G. Asboe-Hansen, Anal. Biochem., 54, 484 (1973).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Thomas, J. Albersheim, and P. Albersheim, Plant Physiol., 49, 926 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2011

Authors and Affiliations

  • T. I. Imbs
    • 1
  • N. M. Shevchenko
    • 1
  • T. L. Semenova
    • 2
  • S. V. Sukhoverkhov
    • 2
  • T. N. Zvyagintseva
    • 1
  1. 1.Pacific Institute of Bioorganic Chemistry, Far-East BranchRussian Academy of SciencesVladivostokRussia
  2. 2.Institute of Chemistry, Far-East BranchRussian Academy of SciencesVladivostokRussia

Personalised recommendations