We prove that every Boolean function other than the constant and the identity function can be realized by an irredundant combinational circuit in the basis {xy, x ⊕ y, x ~ y} (in the basis {x ∨ y, x ⊕ y, x ~ y}) that admits a single detection test of length 1 with respect to element insertions not preserving the same constant.
This is a preview of subscription content, access via your institution.
References
- 1.
S. Das Gupta, C. R. P. Hartmann, and L. D. Rudolph, “Dual-mode logic for function-independent fault testing,” IEEE Trans. Comput., C-29, No. 11, 1025–1029 (1980).
- 2.
J. P. Hayes, “On modifying logic networks to improve their diagnosability,” IEEE Trans. Comput., C-23, No. 1, 56–62 (1974).
- 3.
V. Geetha, N. Devarajan, and P. N. Neelakantan, “Analysis of different types of faults in a class of Boolean circuits, International Journal of Engineering and Innovative Technology (IJEIT), 2, No. 4, 145–149 (2012).
- 4.
V. Geetha, N. Devarajan, and P. N. Neelakantan, “Single network structure for stuck-at and bridging fault analysis and diagnosis for Exclusive-OR sum of products in Reed–Muller canonical circuits,” Elixir Elec. Eng., 57, 14080–14085 (2013).
- 5.
V. Geetha, N. Devarajan, and P. N. Neelakantan, “Network structure for testability improvement in exclusive-OR sum of products Reed–Muller canonical circuits, Int. J. Eng. Res. Gen. Sci., 39, No. 3, 368–378 (2015).
- 6.
T. Hirayama, G. Koda, Y. Nishitani, and K. Shimizu, “Easily testable realization based on OR-AND-EXOR expansion with singlerail inputs,” IEICE Trans. Inf. & Syst., E-82D, No. 9, 1278–1286 (1999).
- 7.
H. Inose and M. Sakauchi, “Synthesis of automatic fault diagnosable logical circuits by function conversion method,” Proc. First USA-Japan Computer Conf. (1972), pp. 426–430.
- 8.
A. K. Jameil, “A new single stuck fault detection algorithm for digital circuits,” Int. J. Eng. Res. Gen. Sci., 3, No. 1, 1050–1056 (2015).
- 9.
K. L. Kodandapanim, “A note on easily testable realizations for logic functions,” IEEE Transactions on Computers, C-23, No. 3, 332–333 (1974).
- 10.
P. N. Neelakantan and J. A. Ebenezer, “Single stuck-at fault diagnosing circuit of Reed–Muller canonical exclusive-or sum of product Boolean expressions,” J. Comput. Sci., 2, No. 7, 595–599 (2006).
- 11.
S. M. Reddy, “Easily testable realization for logic functions,” IEEE Trans. Comput., 21, No. 1, 124–141 (1972).
- 12.
K. K. Saluja and S. M. Reddy, ‘On minimally testable logic networks,” IEEE Trans. Comput., C-23, No. 1, 552–554 (1974).
- 13.
T. Sasao and P. Besslich, “On the complexity of mod-2 sum PLAs,” IEEE Trans. on Comput., 39, No. 2, 262–266 (1990).
- 14.
T. Shah, A. Matrosova, M. Fujita, and V. Singh, “Multiple stuck-at fault testability analysis of ROBDD based combinational circuit design,” Journal of Electronic Testing (JETTA), 34, No. 1 (2018).
- 15.
S. M. Thamarai, K. Kuppusamy, and T. Meyyappan, “Fault detection and test minimization methods for combinational circuits — A survey,” International Journal of Computer Trends and Technology, 2, No. 2, 140–146 (2011).
- 16.
Yu. V. Borodina, “On the synthesis of easily testable circuits for single-type stuck-at faults on element outputs,” Vestnik MGU, ser. 15: Vychil. Matem. Kibern., No. 1, 40–44 (2008).
- 17.
Yu. V. Borodina, “Circuits admitting single tests of length 1 with stuck-at faults on element outputs,” Vestnik MGU, ser. 1: Matem., Mekhan., 63, No. 5, 49–52 (2008).
- 18.
Yu. V. Borodina, “Lower bound on the length of a complete test in the basis {x | y},” Vestnik MGU, ser. 1: Matem., Mekhan., 70, No. 4, 49–51 (2015).
- 19.
Yu. V. Borodina and P. A. Borodin, “Synthesis of easily testable circuits in the Zhegalkin basis with suck-at-0 faults on element outputs,” Diskr. Matem., 22, No. 3, 127–133 (2010).
- 20.
S. V. Kovatsenko, “Synthesis of easily testable circuits in the Zhegalkin basis for inversion faults,” Vestnik MGU, ser. 15: Vychil. Matem. Kibern., No. 2, 45–47 (2000).
- 21.
S. S. Kolyada, “On single detection tests for stuck-at faults on outputs of combinational elements,” Vestnik MGU, ser. 1: Matem., Mekhan., No. 6, 47–49 (2011).
- 22.
S. S. Kolyada, “Single detection tests for combinational circuits in bases of elements with at most two inputs,” Diskr. Analiz i Issledov. Operatsii, 20, No. 2, 58–74 (2013).
- 23.
S. S. Kolyada, “Single detection tests for combinational circuits,” Vestnik MGU, ser. 1: Matem., Mekhan., No. 4, 32–34 (2013).
- 24.
V. N. Noskov, “A synthesis method for easily controllable combinational circuits,” Diskr. Matem., 5, No. 4, 2–23 (1993).
- 25.
N. A. Peryazev, “Complexity of Boolean functions in the class of polynomial polarized forms,” Algebra i Logika, 34, No. 3, 323–326 (1995).
- 26.
K. A. Popkov, “Lower bounds on the length of single test for combinational circuits,” Disk. Matem., 29, No. 2, 53–59 (2017).
- 27.
K. A. Popkov, “Single detection tests for combinational circuits in the basis of AND-NOT elements,” Prikl. Diskr. Matem., No. 38, 66–88 (2017).
- 28.
K. A. Popkov, “Complete detection tests of length 2 for circuits with arbitrary stuck-at faults,” Diskr. Analia i Issled. Operatsii, 25, No. 2, 62–81 (2018).
- 29.
K. A. Popkov, “Short single tests for circuits with arbitrary stuck-at faults on element outputs,” Diskr. Matem., 30, No. 3, 99–116 (2018).
- 30.
K. A. Popkov, “Synthesis of easily testable circuits with single-type stuck-at faults on element inputs and outputs,” Intellektual’nye Sistemy. Teoriya i Prilozheniya, 22, No. 3, 131–147 (2018).
- 31.
K. A. Popkov, “Synthesis of easily testable circuits in the presence of arbitrary stuck-at faults on element inputs and outputs,” Prikl. Diskr. Matem., No. 43, 78–100 (2019).
- 32.
K. A. Popkov, “Short complete fault detection tests for circuits of two-input combinational elements,” Diskr. Analiz i Issledov. Operatsii, 26, No. 1, 89–113 (2019).
- 33.
K. A. Popkov, “Short single tests for circuits in the presence of arbitrary stuck-at faults on element outputs,” Disk. Matem., 30, No. 3, 99–116 (2018).
- 34.
N. P. Red’kin, “On detection tests for cicuits with single-type stuck-at faults on element inputs,” Izv. Vuzov, Matem., No. 7, 57–64 (1988).
- 35.
N. P. Red’kin, “On circuits that admit short tests,” Vestnik MGU, ser. 1: Matem., Mekhan., No. 2, 17–21 (1988).
- 36.
N. P. Red’kin, “On complete detection tests for combinational circuit,” Matem. Voprosy Kibern., Nauka, Moscow, No. 2, 198–222 (1989).
- 37.
N. P. Red’kin, Circuit Reliability and Disgnosiss [in Russian], Izd. MGU, Moscow (1992).
- 38.
N. P. Red’kin, “Single detection tests for circuits with inversion faults,” Matem. Voprosy Kibern., Fizmatlit, Moscow, No. 12, 217–230 (2003),
- 39.
D. S. Romanov, “On the synthesis of circuits that admit complete detection tests of constant length with respect to arbitrary stuck-at faults on element outputs,” Diskr. Matem., 25, No. 2, 104–120 (2013).
- 40.
D. S. Romanov, “Synthesis of easily testable circuits that admit single detection tests of constant length,” Disk. Matem., 26, No. 2, 100–130 (2014).
- 41.
D. S. Romanov, “On the synthesis of circuits that admit complete detection tests of constant length with respect to inversion faults on element outputs,” Vestnik MGU, ser. 15: Vychisl. Matem. Kibern., No. 1, 30–37 (2015).
- 42.
D. S. Romanov and E. Yu. Romanova, “Synthesis method for irredundant circuits that admit single detection tests of constant length,” Diskr. Matem., 29, No. 4, 87–105 (2017).
- 43.
S. N. Selezneva, “On complexity of representation of many-valued logic functions by polarized polynomials,” Diskr. Matem., 14, No. 2, 48–53 (2002).
- 44.
S. N. Selezneva, “On complexity of generalized polarized polynomials of k-valued functions,” Diskr. Matem., 21, No. 4, 20–29 (2009).
- 45.
S. N. Selezneva, “Complexity of systems of Boolean functions and systems of three-valued logic functions in classes of polarized polynomial forms,” Diskr. Matem., 27, No. 1, 111–122 (2015).
- 46.
I. A. Chegis and S. V. Yablonskii, “Logic control methods for electric circuits,” Trudy MIAN SSSR, 51, 270–360 (1958).
- 47.
S. V. Yablonskii and I. A. Chegis, “On tests for electric circuits,” UMN, 10, No. 4(60), 182–184 (1955).
Author information
Affiliations
Corresponding author
Additional information
Translated from Prikladnaya Matematika i Informatika, No. 64, 2020, pp. 64–78.
Rights and permissions
About this article
Cite this article
Aleksandrova, N.E., Romanov, D.S. The Length of a Single Fault Detection Test for Constant-Nonpreserving Element Insertions. Comput Math Model 31, 484–493 (2020). https://doi.org/10.1007/s10598-021-09510-5
Published:
Issue Date:
Keywords
- combinational circuits
- detection test
- element insertion
- Shannon function of test length