Advertisement

Computational Mathematics and Modeling

, Volume 26, Issue 4, pp 577–584 | Cite as

M-Preconditioner for Solving Fuzzy Linear Systems

  • Shidong Dai
  • Shiheng Wang
  • Ke Wang
Numerical Methods

An M-preconditioner is provided for solving fuzzy linear systems whose coefficient matrices are crisp M-matrices and the right-hand side columns are arbitrary fuzzy number vectors. The iterative algorithm is given for the M-preconditioned conjugate gradient (MPCG) method. The convergence is analyzed with convergence theorems. Numerical examples are given to illustrate the procedure and show the effectiveness and efficiency of the method.

Keywords

M-preconditioner M-matrix Fuzzy linear system (FLS) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abbasbandy, R. Ezzati, and A. Jafarian, “LU decomposition method for solving fuzzy system of linear equations,” Appl. Math. Comput., 172, 633–643 (2006).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    S. Abbasbandy and A. Jafarian, “Steepest descent method for system of fuzzy linear equations,” Appl. Math. Comput., 175, 823–833 (2006).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    S. Abbasbandy, A. Jafarian, and R. Ezzati, “Conjugate gradient method for fuzzy symmetric positive definite system of linear equations,” Appl. Math. Comput., 171, 1184–1191 (2005).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    T. Allahviranloo, “Numerical methods for fuzzy system of linear equations,” Appl. Math. Comput., 155, 493–502 (2004).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    T. Allahviranloo, “Successive over relaxation iterative method for fuzzy system of linear equations,” Appl. Math. Comput., 162, 189–196 (2005).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    T. Allahviranloo, “The Adomian decomposition method for fuzzy system of linear equations,” Appl. Math. Comput., 163, 553–563 (2005).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia (1994).CrossRefMATHGoogle Scholar
  8. 8.
    M. Dehghan and B. Hashemi, “Iterative solution of fuzzy linear systems,” Appl. Math. Comput., 175, 645–674 (2006).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    R. Ezzati, “Solving fuzzy linear systems,” Soft Comput., 15, 193–197 (2011).CrossRefMATHGoogle Scholar
  10. 10.
    M. A. Fariborzi Araghi and A. Fallahzadeh, “Inherited LU factorization for solving fuzzy system of linear equations,” Soft Comput., 17, 159–163 (2013).CrossRefMATHGoogle Scholar
  11. 11.
    M. Friedman, M. Ming, and A. Kandel, “Fuzzy linear systems,” Fuzzy Sets Syst., 96, 201–209 (1998).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    M. S. Hashemi, M. K. Mirnia, and S. Shahmorad, “Solving fuzzy linear systems by using the Schur complement when coefficient matrix is an M-matrix,” Iran. J. Fuzzy Syst., 5, 15–29 (2008).MathSciNetMATHGoogle Scholar
  13. 13.
    X.-Q. Jin, “M-preconditioner for M-matrices,” Appl. Math. Comput., 172, 701–707 (2006).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    J. Li, W. Li, and X. Kong, “A new algorithm model for solving fuzzy linear systems,” Southeast Asian Bull. Math., 34, 121–132 (2010).MathSciNetGoogle Scholar
  15. 15.
    S.-X. Miao, B. Zheng, and K. Wang, “Block SOR methods for fuzzy linear systems,” J. Appl. Math. Comput., 26, 201–218 (2008).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    S. H. Nasseri, M. Matinfar, and M. Sohrabi, “QR-decomposition method for solving fuzzy system of linear equations,” Int. J. Math. Comput., 4, 129–136 (2009).MathSciNetGoogle Scholar
  17. 17.
    D. K. Salkuyeh, “On the solution of the fuzzy Sylvester matrix equation,” Soft Comput., 15, 953–961 (2011).CrossRefMATHGoogle Scholar
  18. 18.
    K. Wang and Y. Wu, “Uzawa-SOR method for fuzzy linear system,” Int. J. Inform. Comput. Sci., 1, 36–39 (2012).Google Scholar
  19. 19.
    K. Wang and B. Zheng, “Symmetric successive overrelaxation methods for fuzzy linear systems,” Appl. Math. Comput., 175, 891–901 (2006).MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    K. Wang and B. Zheng, “Block iterative methods for fuzzy linear systems,” J. Appl. Math. Comput., 25, 119–136 (2007).MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    J.-F. Yin and K. Wang, “Splitting iterative methods for fuzzy system of linear equations,” Comput. Math. Model., 20, 326–335 (2009).MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Y. Zhu, J. Joutsensalo, and T. H¨am¨al¨ainen, “Solutions to fuzzy linear systems,” Information, 13, 23–30 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of MathematicsShanghai UniversityShanghaiP.R. China
  2. 2.Nanyang Vocational College of AgricultureNanyangP.R. China

Personalised recommendations