Skip to main content
Log in

Generalized Chaplygin Problem: Theoretical Analysis and Numerical Experiments

  • Mathematical Modeling
  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

We investigate a modified Chaplygin problem with flight path enclosing the maximum area. A twodimensional controlled plant with simple motion and control region in the form of a smooth planar convex compactum with interior point O should describe, in a given time, a closed curve enclosing a plane region of maxi-mum area. The initial and the final points of the trajectory coincide. The direction of the velocity vector at the initial time is given. The problem is solved by the Pontryagin maximum principle. A procedure to construct a programmed optimal control is described. An optimal control law is described in synthesis form (feedback form). The theoretical analysis relies on the apparatus of support and distance functions. The optimal trajectory can be derived from the polar of the control region by simple linear transformations: multiplication by a positive number, rotation through a right angle, and parallel translation. Numerical experiments have been carried out. The discussion is illustrated with graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  2. Yu. N. Kiselev, S. N. Avvakumov, and M. V. Orlov, Optimal Control. Linear Theory and Applications [in Russian], MAKS Press, Moscow (2007).

    Google Scholar 

  3. L. S. Pontryagin, Ordinary Differential Equations [in Russian], Nauka, Moscow (1961).

    Google Scholar 

  4. Yu. N. Kiselev, “Generalized Chaplygin’s problem,” in: Proc. Tenth Crimean Autumn Math. School, Vol. 10 (2000), pp. 160–163.

  5. M. A. Lavrent’ev and L. A. Lyusternik, A Course in Variational Calculus [in Russian], GONTI-NKTI, Moscow-Leningrad (1938).

    Google Scholar 

  6. E. V. Mukhammetzhanov and I. A. Mochalov, The Fuzzy Chaplygin Problem, Nauka i Obrazovanie, e-journal (05 May 2012).

  7. Yu. N. Kiselev, “Controlled systems with an integral invariant,” Diff. Uravn., 32, No. 4, 44–51 (1996).

    Google Scholar 

  8. Yu. N. Kiselev, “Construction of exact solutions for nonlinear time-optimal problems of special form,” Fund. Prikla. Mat., 3, No. 3, 847–868 (1997).

    MATH  Google Scholar 

  9. Yu. N. Kiselev, “Solution methods for a linear time-optimal problem,” Trudy Mat. Inst. V. A. Steklova RAN, 185, 106–115 (1988).

    MATH  Google Scholar 

  10. S. N. Avvakumov, Yu. N. Kiselev, and M. V. Orlov, “Methods for optimal control problems using the Pontryagin maximum principle,” Trudy Mat. Inst. V. A. Steklova RAN, 211, 3–31 (1995).

    MathSciNet  Google Scholar 

  11. L. Cesari, Optimization – Theory and Applications, Springer, New York (1983).

    Book  MATH  Google Scholar 

  12. Yu. N. Kiselev and S. N. Avvakumov, “Construction of an analytical solution of the Cauchy problem for a two-dimensional Hamiltonian system,” Trudy IMM UrO RAN, 19, No. 4, 131–141 (2013).

    MathSciNet  Google Scholar 

  13. Yu. N. Kiselev, Dynamic Programming Method in Continuous Controlled Systems, Krymskaya Elektronnaya Biblioteka [http://libkruz.com/books/3062.html]

  14. S. N. Avvakumov and Yu. N. Kiselev, “Some optimal control algorithms,” Trudy Inst. Matem. Mekhan., 12, No. 2, 3–17 (2006).

    MathSciNet  Google Scholar 

  15. S. N. Avvakumov and Yu. N. Kiselev, “Support functions of some special sets, constructive smoothing procedures, and geometrical difference,” Probl. Dynam. Upravl., MAKS Press, Moscow, 1, 24–110 (2005).

  16. Yu. N. Kiselev, Linear Theory of Time-Optimal Control with Perturbations [in Russian], MGU, Moscow (1986).

    Google Scholar 

  17. Yu. N. Kiselev, “Fast-converging algorithms for the linear time-optimal problem,” Kibernetika, No. 6, 47–57 (1990).

    Google Scholar 

  18. Yu. N. Kiselev and M. V. Orlov, “Numerical algorithms for linear time-optimal control,” Zh. Vychisl. Matem. i Mat. Fiz., 31, No. 12, 1763–1771 (1991).

    MATH  MathSciNet  Google Scholar 

  19. Yu. N. Kiselev and M. V. Orlov, “Potential method in linear time-optimal problem,” Diff. Uravn., 32, No. 1, 44–51 (1996).

    MathSciNet  Google Scholar 

  20. Yu. N. Kiselev and M. V. Orlov, “Methods for the maximum-principle nonlinear boundary-value problem in the time-optimal problem,” Diff. Uravn., 31, No. 11, 1843–1850 (1995).

    MathSciNet  Google Scholar 

  21. S. N. Avvakumov, “Smooth approximation of convex compacta,” Trudy Inst. Matem. Mekhan., 4, 184–200 (1996).

    MATH  MathSciNet  Google Scholar 

  22. Yu. N. Kiselev, “Construction of optimal feedback in smooth linear time-optimal problem,” Diff. Uravn., 26, No. 2, 232–237 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. N. Kiselev or S. N. Avvakumov.

Additional information

Translated from Prikladnaya Matematika i Informatika, No. 46, 2014, pp. 5–45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiselev, Y.N., Avvakumov, S.N. Generalized Chaplygin Problem: Theoretical Analysis and Numerical Experiments. Comput Math Model 26, 299–335 (2015). https://doi.org/10.1007/s10598-015-9274-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-015-9274-1

Keywords

Navigation