Computational Mathematics and Modeling

, Volume 26, Issue 2, pp 184–203 | Cite as

Construction of Godunov-Type Difference Schemes in Curvilinear Coordinates and an Application to Spherical Coordinates

  • M. V. Abakumov
II. Numerical Methods

A method is proposed for the construction of conservative flow difference schemes for the calculation of compressible viscous gas flows in curvilinear coordinates based on an arbitrary Godunov-type Cartesian scheme. The realization of the scheme in curvilinear coordinates requires minimal additions to the basic Cartesian scheme code. The method is illustrated in application to the case of spherical coordinate. A spherical scheme of second-order spatial approximation is constructed. Results of test calculations are reported.


compressible viscous gas equation curvilinear coordinate Godunov-type difference schemes spherical coordinates flow past a sphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Tikhonov and A. A. Samarskii, “Convergence of difference schemes in the class of discontinuous coefficients,” Doklady AN SSSR, 124, 529 (1959).MATHGoogle Scholar
  2. 2.
    A. S. Samarskii, Theory of Difference Schemes [in Russian], 3 rd ed., Nauka, Moscow (1989).Google Scholar
  3. 3.
    A. A. Samarskii and Yu. P. Popov, Difference Methods in Gas Dynamics [in Russian], Nauka, Moscow (1980).Google Scholar
  4. 4.
    S. K. Godunov, “Difference method for numerical calculation of discontinuous solutions in hydrodynamics,” Matem. Sb., 47, No. 89, 271 (1959).MathSciNetGoogle Scholar
  5. 5.
    S. K. Godunov, A. V. Zabrodin, and G. P. Prokopov, “Difference scheme for two-dimensional nonstationary problems of gas dynamics and calculation of flow with separating shockwave,” Zh. Vychil. Mat. i Matem. Fiz., 1, 1020 (1961).MathSciNetGoogle Scholar
  6. 6.
    S. Osher and F. Solomon, “Upwind difference schemes for hyperbolic systems of conservation laws,” Math. Comput., 38, 339 (1982).CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    A. Harten, P. D. Lax, and B. Van Leer, “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws,” SIAM Rev., 25, 35 (1983),CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    P. L. Roe, “Characteristic-based schemes for the Euler equations,” Ann. Rev. Fluid Mech., 18, 337 (1986).CrossRefMathSciNetGoogle Scholar
  9. 9.
    B. Einfeldt, “On Godunov-type methods for gas dynamics,” SIAM J. Numer. Anal., 25, 294 (1988).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    S. R. Chakravarthy and S. Osher, “A new class of high accuracy TVD schemes for hyperbolic conservation laws,” AIAA Paper No. 85–0363 (1985).Google Scholar
  11. 11.
    M. V. Abakumov, “Construction of Godunov-type difference schemes in curvilinear coordinates and application to cylindrical coordinates,” Prikl. Mat. Informat., MAKS Press, Moscow, No. 43, 25–44 (2013).Google Scholar
  12. 12.
    L. D. Landau and E. M. Lifshits, Hydrodynamics, Theoretical Physics Vol. 4, Nauka, Moscow (1986).Google Scholar
  13. 13.
    L. G. Loitsyanskii, Fluid and Gas Mechanics [in Russian], 7 th ed., Drofa, Moscow (2003).Google Scholar
  14. 14.
    L. I. Sedov, Mechanics of Continuous Media [in Russian], Vol. 1, Nauka, Moscow (1970).Google Scholar
  15. 15.
    N. E. Kochin, Vector Calculus and Elements of Tensor Calculus [in Russian], Nauka, Moscow (1965).Google Scholar
  16. 16.
    M. V. Abakumov, A. P. Favorskii, and A. B. Khrulenko, “Representation of Navier–Stokes equations in curvilinear coordinates,” Preprint MAKS Press, Moscow (2011).Google Scholar
  17. 17.
    M. Van Dyke, An Album of Fluid Motion, Parabolic Press, Stanford (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations