Skip to main content
Log in

An Algorithm for Solving Nonlinear Differential-Difference Models

  • Published:
Computational Mathematics and Modeling Aims and scope Submit manuscript

A novel technique for numerical solution of the nonlinear differential equations arising in nanotechnology and engineering phenomena is presented in this paper. The technique is based on the application of the Laplace transform via the homotopy method to solve nonlinear differential-difference models. This method gives more reliable results as compared to other existing methods available in the literature. The numerical results demonstrate the validity and applicability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Fermi, J. Pasta, and S. Ulam, Collected Papers of Enrico Fermi II, University of Chicago Press, Chicago (1965).

    Google Scholar 

  2. S. D. Zhu, Y. M. Chu, and S. L. Qiu, “The homotopy perturbation method for discontinued problems arising in nanotechnology,” Comput. Math. Appl., 58, 2398–2401 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  3. M. S. E. Naschie, “Deterministic quantum mechanics versus classical mechanical indeterminism,” Int. J. Nonlinear Sci., 8, 5–10 (2007).

    Google Scholar 

  4. M. S. E. Naschie, “Nanotechnology for the developing world,” Chaos, Solitons & Fractals, 30, 769–773 (2006).

    Article  Google Scholar 

  5. Y. Liu and J. H. He, “Bubble electrospinning for mass production of nanofibers,” Int. J. Nonlinear Sci., 8, 393–396 (2007).

    Google Scholar 

  6. J. H. He, Y. Y. Liu, and L. Xu, “Microsphere with nanoporosity by electrospinning,” Chaos, Solitons & Fractals, 32, 1096–1100 (2007).

    Article  Google Scholar 

  7. J. H. He and S. D. Zhu, “Differential-difference model for nanotechnology,” J. Phys. Conf. Ser., 96, 012189 (2008).

    Article  Google Scholar 

  8. D. Levi and R. I. Yamilov, “Conditions for the existence of higher symmetries of evolutionary equations on a lattice,” J. Math. Phys., 38, 6648 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  9. R. I. Yamilov, “Construction scheme for discrete Miura transformations,” J. Phys. A, Gen., 27, 6839 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  10. I. Y. Cherdantsev and R. I. Yamilov, “Master symmetries for differential-difference equations of the Volterra type,” Physica D, 87, 140 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  11. Y. B. Suris, “Integrable discretizations for lattice systems, local equations of motion and their Hamiltonian properties,” Rev. Math. Phys., 11, 727–822 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. B. Suris, “The problem of integrable discretization,” Hamiltonian Approach. Progress in Mathematics, 219, Basel, Birkhäuser Verlag (2003).

  13. S. D. Zhu, “Exp-function method for the Hybrid-Lattice system,” Int. J. Nonlinear Sci. Numer. Simul., 8, 461–464 (2007).

    Google Scholar 

  14. S. D. Zhu, “Exp-function method for the discrete mKdV lattice,” Int. J. Nonlinear Sci. Numer. Simul., 8, 465–468 (2007).

    Google Scholar 

  15. J. M. Zhu, “Homotopy perturbation method for the nonlinear relativistic Toda lattice equations,” Topol. Method. Nonlinear Anal., 31, 373–381 (2008).

    MATH  Google Scholar 

  16. A. Yildirim, “Exact solutions of nonlinear differential-difference equation by He’s homotopy perturbation method,” Int. J. Nonlinear Sci. Numer. Simul., 9, 111–114 (2008).

    Article  Google Scholar 

  17. A. Yildirim, “Applying He’s variational iteration method for solving differential difference equations,” Math. Prob. Eng., 2008, Article ID 869614, doi: 10.1155/2008/869614 (2008).

  18. R. Mokhtari, “Variational iteration method for solving nonlinear differential-difference equations,” Int. J. Nonlinear Sci. Numer. Simul., 9, 19–23 (2008).

    Article  Google Scholar 

  19. Wu Lei, L. D. Xie, and J. F. Zhang, “Adomian decomposition method for nonlinear differential-difference equations,” Commun. Nonlinear Sci. Numer. Simul., 14, 12–18 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  20. Y. Khan and N. Faraz, “A new approach to differential difference equations,” J. Adv. Res. Differ. Eq., 2, 1–12 (2010).

    Article  Google Scholar 

  21. Y. Khan, H. Vázquez-Leal, and N. Faraz, “An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations,” Appl. Math. Model., 37, 2702–2708 (2013).

    Article  MathSciNet  Google Scholar 

  22. Z. Wang, “Discrete tanh method for nonlinear differential-difference equations,” Comput. Phys. Commun., 180, 1104–1108 (2009).

    Article  MATH  Google Scholar 

  23. N. Faraz, Y. Khan, and F. Austin, “An alternative approach to differential-difference equation by using variational iteration algorithm,” Z. Naturforsch., 65a, 1055–1059 (2010).

    Google Scholar 

  24. M. Gülsu, Y. Öztürk, and M. Sezer, “A new collocation method for solution of mixed linear integro-differential-difference equations,” Appl. Math. Comput., 216, 2183–2198 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  25. Ş. Yüzbaşı, “A numerical approach for solving high-order linear singular differential-difference equations,” Comput. Math. Appl., 62, 2289–2303 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  26. P. S. V. N. Murthy and P. Singh, “Thermal dispersion effects on non-Darcy natural convection over horizontal plate with surface mass flux,” Arch. Appl. Mech., 67, 487–495 (1997).

    Article  MATH  Google Scholar 

  27. E. Magyari and B. Keller, “Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls,” Eur. J. Mech. B-Fluids, 19, 109–122 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  28. Y. Khan, Q. Wu, N. Faraz, and A. Yildirim, “The effects of variable viscosity and thermal conductivity on a thin film flow over a shrinking/stretching sheet,” Comput. Math. Appl., 61, 3391–3399 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  29. M. Turkyilmazoglu, “Some issues on HPM and HAM methods. A convergence scheme,” Math. Comput. Model., 53, 1929–1936 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  30. Z. Šmarda and O. Archalousova, “Adomian decomposition method for certain singular initial value problems II,” J. Appl. Math., 3, 91–98 (2010).

    Google Scholar 

  31. J. Diblík, Z. Šmarda, and L. Berezansky, “Positive solutions of a second-order delay differential equations with a damping term,” Comput. Math. Appl., 62 (2010), pp. 1332–1352.

    Google Scholar 

  32. Y. Khan and F. Austin, “Application of the Laplace Decomposition Method to Nonlinear Homogeneous and Non-Homogeneous Advection Equations,” Z. Naturforsch., 65a, 849–853 (2010).

    Google Scholar 

  33. M. Turkyilmazoglu, “An optimal variational iteration method,” Appl. Math. Lett., 24, 762–765 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Turkyilmazoglu, “An optimal analytic approximate solution for the limit cycle of Duffing–Van der Pol equation,” J. Appl. Mech., Trans. ASME, 78, 021005 (2011).

    Article  Google Scholar 

  35. Y. Khan and Q. Wu, “Homotopy perturbation transform method for nonlinear equations using He’s polynomials,” Comput. Math. Appl., 61, 1963–1967 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  36. A. Ghorbani, “Beyond Adomian’s polynomials, He polynomials,” Chaos, Solitons & Fractals, 39, 1486–1492 (2009).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, Y. An Algorithm for Solving Nonlinear Differential-Difference Models. Comput Math Model 25, 115–123 (2014). https://doi.org/10.1007/s10598-013-9212-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10598-013-9212-z

Keywords

Navigation