Computational Mathematics and Modeling

, Volume 25, Issue 1, pp 115–123 | Cite as

An Algorithm for Solving Nonlinear Differential-Difference Models

  • Yasir Khan

A novel technique for numerical solution of the nonlinear differential equations arising in nanotechnology and engineering phenomena is presented in this paper. The technique is based on the application of the Laplace transform via the homotopy method to solve nonlinear differential-difference models. This method gives more reliable results as compared to other existing methods available in the literature. The numerical results demonstrate the validity and applicability of the method.


numerical solution iteration method Laplace transform nonlinear differential equations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Fermi, J. Pasta, and S. Ulam, Collected Papers of Enrico Fermi II, University of Chicago Press, Chicago (1965).Google Scholar
  2. 2.
    S. D. Zhu, Y. M. Chu, and S. L. Qiu, “The homotopy perturbation method for discontinued problems arising in nanotechnology,” Comput. Math. Appl., 58, 2398–2401 (2009).CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    M. S. E. Naschie, “Deterministic quantum mechanics versus classical mechanical indeterminism,” Int. J. Nonlinear Sci., 8, 5–10 (2007).Google Scholar
  4. 4.
    M. S. E. Naschie, “Nanotechnology for the developing world,” Chaos, Solitons & Fractals, 30, 769–773 (2006).CrossRefGoogle Scholar
  5. 5.
    Y. Liu and J. H. He, “Bubble electrospinning for mass production of nanofibers,” Int. J. Nonlinear Sci., 8, 393–396 (2007).Google Scholar
  6. 6.
    J. H. He, Y. Y. Liu, and L. Xu, “Microsphere with nanoporosity by electrospinning,” Chaos, Solitons & Fractals, 32, 1096–1100 (2007).CrossRefGoogle Scholar
  7. 7.
    J. H. He and S. D. Zhu, “Differential-difference model for nanotechnology,” J. Phys. Conf. Ser., 96, 012189 (2008).CrossRefGoogle Scholar
  8. 8.
    D. Levi and R. I. Yamilov, “Conditions for the existence of higher symmetries of evolutionary equations on a lattice,” J. Math. Phys., 38, 6648 (1997).CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    R. I. Yamilov, “Construction scheme for discrete Miura transformations,” J. Phys. A, Gen., 27, 6839 (1994).CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    I. Y. Cherdantsev and R. I. Yamilov, “Master symmetries for differential-difference equations of the Volterra type,” Physica D, 87, 140 (1995).CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Y. B. Suris, “Integrable discretizations for lattice systems, local equations of motion and their Hamiltonian properties,” Rev. Math. Phys., 11, 727–822 (1999).CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Y. B. Suris, “The problem of integrable discretization,” Hamiltonian Approach. Progress in Mathematics, 219, Basel, Birkhäuser Verlag (2003).Google Scholar
  13. 13.
    S. D. Zhu, “Exp-function method for the Hybrid-Lattice system,” Int. J. Nonlinear Sci. Numer. Simul., 8, 461–464 (2007).Google Scholar
  14. 14.
    S. D. Zhu, “Exp-function method for the discrete mKdV lattice,” Int. J. Nonlinear Sci. Numer. Simul., 8, 465–468 (2007).Google Scholar
  15. 15.
    J. M. Zhu, “Homotopy perturbation method for the nonlinear relativistic Toda lattice equations,” Topol. Method. Nonlinear Anal., 31, 373–381 (2008).MATHGoogle Scholar
  16. 16.
    A. Yildirim, “Exact solutions of nonlinear differential-difference equation by He’s homotopy perturbation method,” Int. J. Nonlinear Sci. Numer. Simul., 9, 111–114 (2008).CrossRefGoogle Scholar
  17. 17.
    A. Yildirim, “Applying He’s variational iteration method for solving differential difference equations,” Math. Prob. Eng., 2008, Article ID 869614, doi:  10.1155/2008/869614 (2008).
  18. 18.
    R. Mokhtari, “Variational iteration method for solving nonlinear differential-difference equations,” Int. J. Nonlinear Sci. Numer. Simul., 9, 19–23 (2008).CrossRefGoogle Scholar
  19. 19.
    Wu Lei, L. D. Xie, and J. F. Zhang, “Adomian decomposition method for nonlinear differential-difference equations,” Commun. Nonlinear Sci. Numer. Simul., 14, 12–18 (2009).CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Y. Khan and N. Faraz, “A new approach to differential difference equations,” J. Adv. Res. Differ. Eq., 2, 1–12 (2010).CrossRefGoogle Scholar
  21. 21.
    Y. Khan, H. Vázquez-Leal, and N. Faraz, “An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations,” Appl. Math. Model., 37, 2702–2708 (2013).CrossRefMathSciNetGoogle Scholar
  22. 22.
    Z. Wang, “Discrete tanh method for nonlinear differential-difference equations,” Comput. Phys. Commun., 180, 1104–1108 (2009).CrossRefMATHGoogle Scholar
  23. 23.
    N. Faraz, Y. Khan, and F. Austin, “An alternative approach to differential-difference equation by using variational iteration algorithm,” Z. Naturforsch., 65a, 1055–1059 (2010).Google Scholar
  24. 24.
    M. Gülsu, Y. Öztürk, and M. Sezer, “A new collocation method for solution of mixed linear integro-differential-difference equations,” Appl. Math. Comput., 216, 2183–2198 (2010).CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Ş. Yüzbaşı, “A numerical approach for solving high-order linear singular differential-difference equations,” Comput. Math. Appl., 62, 2289–2303 (2011).CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    P. S. V. N. Murthy and P. Singh, “Thermal dispersion effects on non-Darcy natural convection over horizontal plate with surface mass flux,” Arch. Appl. Mech., 67, 487–495 (1997).CrossRefMATHGoogle Scholar
  27. 27.
    E. Magyari and B. Keller, “Exact solutions for self-similar boundary-layer flows induced by permeable stretching walls,” Eur. J. Mech. B-Fluids, 19, 109–122 (2000).CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Y. Khan, Q. Wu, N. Faraz, and A. Yildirim, “The effects of variable viscosity and thermal conductivity on a thin film flow over a shrinking/stretching sheet,” Comput. Math. Appl., 61, 3391–3399 (2011).CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    M. Turkyilmazoglu, “Some issues on HPM and HAM methods. A convergence scheme,” Math. Comput. Model., 53, 1929–1936 (2011).CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Z. Šmarda and O. Archalousova, “Adomian decomposition method for certain singular initial value problems II,” J. Appl. Math., 3, 91–98 (2010).Google Scholar
  31. 31.
    J. Diblík, Z. Šmarda, and L. Berezansky, “Positive solutions of a second-order delay differential equations with a damping term,” Comput. Math. Appl., 62 (2010), pp. 1332–1352.Google Scholar
  32. 32.
    Y. Khan and F. Austin, “Application of the Laplace Decomposition Method to Nonlinear Homogeneous and Non-Homogeneous Advection Equations,” Z. Naturforsch., 65a, 849–853 (2010).Google Scholar
  33. 33.
    M. Turkyilmazoglu, “An optimal variational iteration method,” Appl. Math. Lett., 24, 762–765 (2011).CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    M. Turkyilmazoglu, “An optimal analytic approximate solution for the limit cycle of Duffing–Van der Pol equation,” J. Appl. Mech., Trans. ASME, 78, 021005 (2011).CrossRefGoogle Scholar
  35. 35.
    Y. Khan and Q. Wu, “Homotopy perturbation transform method for nonlinear equations using He’s polynomials,” Comput. Math. Appl., 61, 1963–1967 (2011).CrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    A. Ghorbani, “Beyond Adomian’s polynomials, He polynomials,” Chaos, Solitons & Fractals, 39, 1486–1492 (2009).CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of MathematicsZhejiang UniversityHangzhouChina

Personalised recommendations