Computational Mathematics and Modeling

, Volume 25, Issue 1, pp 1–8 | Cite as

Search for 2-D Solitons in Gross–Pitaevskii Equation

  • V. S. Laponin
  • N. P. Savenkova
I. Mathematical Modeling

The article proposes an iterative method to find soliton solutions of the two-dimensional Gross-Pitaevskii equation. The method also finds soliton solutions of other nonlinear evolution equations. The method can be efficiently implemented on parallel computer systems, producing high-accuracy soliton solutions.


soliton iterative method analytical solution convergence nonlinear differential equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Trofimov and A. V. Rozantsev, “2D soliton formation of BEC at its interaction with external potential,” in: Proceedings of SPIE, 8497 (2012).Google Scholar
  2. 2.
    Yu. S. Kivshar and G. P. Agrawal, Optical Solitons [Russian translation], Fizmatlit (2005).Google Scholar
  3. 3.
    E. B. Tereshin, V. A. Trofimov, and M. V. Fedotov, “Conservative finite difference scheme for the problem of propagation of a femtosecond pulse in a nonlinear photonic crystal with non-reflecting boundary conditions,” Comput. Math. Mathematical Phys., 46, No. 1, 154–164 (2006).CrossRefMathSciNetGoogle Scholar
  4. 4.
    V. S. Laponin, N. P. Savenkova, and V. P. Il’yutko, “A numerical method to find soliton solutions,” Prikl. Mat. Informat., MGU, No. 38, 69–80 (2011).Google Scholar
  5. 5.
    A. Newell, Solitons in Mathematics and Physics [Russian translation], Mir, Nauka (1989).Google Scholar
  6. 6.
    V. E. Zakharov, S. V. Manakov, S. P. Novikov, and L. P. Pitaevskii, Soliton Theory: The Inverse Problem Method [in Russian], Nauka, Moscow (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations