Computational Mathematics and Modeling

, Volume 24, Issue 4, pp 543–551 | Cite as

A class of models describing the dynamics of production and infrastructure-planning indicators

  • N. L. Grigorenko
  • D. V. Kamzolkin
  • L. N. Luk’yanova

A mathematical model is proposed for the dynamics of infrastructure indicators in an isolated region with a mining enterprise, based on the theory of multisector models of economic dynamics. We examine the time-dependent optimal control problem for the enterprise production cycle and for investments in the infrastructure sector, where the terminal performance functional requires maximizing the economic efficiency of both production and infrastructure. A numerical algorithm is proposed for the corresponding optimal control problem. Calculations of optimal control for test model parameters are reported.


optimal control models of economic dynamics infrastructure planning Pontryagin maximum principle maximum-principle boundary-value problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Ashmanov, Introduction to Mathematical Economics [in Russian], Nauka, Moscow (1984).Google Scholar
  2. 2.
    R. Allen, Mathematical Economics [Russian translation], IL, Moscow (1963).Google Scholar
  3. 3.
    M. Intrilligator, Mathematical Optimization Methods and Economic Theory [Russian translation], Airis Press, Moscow (2002).CrossRefGoogle Scholar
  4. 4.
    V. A. Kolemaev, Mathematical Economics [in Russian], Yuniti, Moscow (1998).Google Scholar
  5. 5.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, Mathematical Theory of Optimal Processes [in Russian], Nauka, Moscow (1961).Google Scholar
  6. 6.
    A. N. Tikhonov, “On regularization method for optimal control problems,” DAN SSSR, 162, No. 4, 763–766 (1965).Google Scholar
  7. 7.
    F. P. Vasil’ev, Optimization Methods [in Russian], Faktorial Press, Moscow (2002).Google Scholar
  8. 8.
    N. L. Grigorenko, D. V. Kamzolkin, and L. N. Luk’yanova, “Solution of an optimal control problem,” Probl. Dinam. Upravl., 1, 137–144 (2005).MathSciNetGoogle Scholar
  9. 9.
    Luk’yanova, and D. G. Pivovarchuk, “On an optimal control problem with an integral functional of a rational control function,” Diff. Uravn., 45, No. 11, 1586–1600 (2009).MathSciNetGoogle Scholar
  10. 10.
    S. N. Avvakumov, Yu. N. Kiselev, and M. V. Orlov, “Investigation of a one-dimensional MDI optimization model. Infinite horizon. Finite horizon,” Probl. Dinam. Upravl., 1, 111–136.Google Scholar
  11. 11.
    Yu. N. Kiselev, S. N. Avvakumov, and M. V. Orlov, “Hyperbolic tangent law for optimal control synthesis in one nonlinear model with discounting,” Diff. Uravn., 42, No. 11, 1490–1506 (2006).MathSciNetGoogle Scholar
  12. 12.
    S. N. Avvakumov and Yu. N. Kiselev, “Some optimal control algorithms,” Trudy IMM UrO RAN, 12, No. 2, 3–17.Google Scholar
  13. 13.
    A. M. Taras’ev, V. N. Ushakov, and A. P. Khripunov, “Constructing positional absorption sets in game-theoretical control problems,” Trudy IMM UrO RAN, 1, 160–177 (1992).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • N. L. Grigorenko
    • 1
  • D. V. Kamzolkin
    • 2
  • L. N. Luk’yanova
    • 3
  1. 1.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia
  2. 2.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia
  3. 3.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations