Computational Mathematics and Modeling

, Volume 23, Issue 4, pp 461–477 | Cite as

Electromagneto-thermoelastic interactions in an orthotropic slab with two relaxation times

  • N. Sarkar
  • A. Lahiri

A two-dimensional problem in electromagneto-thermoelasticity for a homogeneous orthotropic perfectly conducting elastic slab subjected to a time-dependent heat source on each face is considered in the context of the Green and Lindsay model of thermoelasticity. There acts an initial magnetic field with constant intensity parallel to the plane boundary of the slab. The normal mode analysis and eigenvalue approach is used to solve the governing equations. The distribution of the considered field variables is presented graphically.


Magneto-thermoelasticity Green–Lindsay model orthotropic slab eigenvalue approach 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Nowinski, Theory of Thermoelasticity with Applications, Sijthoff and Noordhoff International Publishers Alphen aan den Rijn (1978).Google Scholar
  2. 2.
    M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., 27, 240–253 (1956).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    H. W. Lord and Y. A. Shulman, “Generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, 15, 299–309 (1967).MATHCrossRefGoogle Scholar
  4. 4.
    A. E. Green and K. A. Lindsay, “Thermoelasticity,” J. Elast., 2, 1–7 (1972).MATHCrossRefGoogle Scholar
  5. 5.
    R. S. Dhaliwal and H. H. Sherief, “Generalized thermoelasticity for anisotropic media,” Quart. Appl. Math., 38, 1–8 (1980).MathSciNetMATHGoogle Scholar
  6. 6.
    J. Ignaczak, “Uniqueness in generalized thermoelasticity,” J. Therm. Stresses, 2, 171–175(1979).CrossRefGoogle Scholar
  7. 7.
    J. Ignaczak, “A note on uniqueness in thermoelasticity with one relaxation time,” J. Therm. Stresses, 5, 257–263 (1982).MathSciNetCrossRefGoogle Scholar
  8. 8.
    R. S. Dhaliwal and H. H. Sherief, “A uniqueness theorem and a variational principle for generalized thermoelasticity,” J. Therm. Stresses, 3, 223–230 (1980).CrossRefGoogle Scholar
  9. 9.
    H. H. Sherief, “On uniqueness and stability in generalized thermoelasticity,” Quart. Appl. Math., 5, 773–778 (1987).MathSciNetGoogle Scholar
  10. 10.
    A. H. Nayfeh and S. Nemat-Nasser, “Electromagneto-thermoelastic plane waves in solids with thermal relaxation,” J. Appl. Mech., 113, 108–113 (1972).CrossRefGoogle Scholar
  11. 11.
    S. K. Roy Choudhuri, “Electro-magneto-thermo-elastic plane waves in rotating media with thermal relaxation,” Int. J. Eng. Sci., 22, 519–530 (1984).MATHCrossRefGoogle Scholar
  12. 12.
    H. H. Sherief and M. A. Ezzat, “A problem in generalized magneto-thermoelasticity for an infinitely long annular cylinder,” J. Eng. Math., 34, 387–402 (1998).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    H. Sherief and K. Helmy, “A two-dimensional problem for a half-space in magneto-thermoelasticity with thermal relaxation,” Int. J. Eng. Sci., 38, 587–604 (2002).MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. A. Ezzat and M. I. Othman, “Electromagneto-thermoelastic waves with two relaxation times in a medium of perfect conductivity,” Int. J. Eng. Sci., 38, 107–120 (2000).CrossRefGoogle Scholar
  15. 15.
    M. A. Ezzat, M. I. Othman, and A. A. Smaan, “State space approach to two-dimensional electromagneto-thermoelastic problem with two relaxation times,” Int. J. Eng. Sci., 39, 1383–1404 (2001).CrossRefGoogle Scholar
  16. 16.
    V. K. Agarwal, “On electromagneto-thermoelastic plane waves,” Acta Mech., 34, 181–191(1979).MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    B. Mukhopadhyay and R. K. Bera, “Effect of distributed instantaneous and continuous heat sources in an infinite conducting magnetothermo-viscoelastic solid with thermal relaxation,” Comput. Math. Appl., 18, 723–728 (1989).MATHCrossRefGoogle Scholar
  18. 18.
    A. Baksi, R. K. Bera, and L. Debnath, “A study of magneto-thermoelastic problems with thermal relaxation and heat sources in a three-dimensional infinite rotating elastic medium,” Int. J. Eng. Sci., 43, 1419–1434 (2005).MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    S. K. Roychoudhuri and L. Debnath, “Magneto-thermo-elastic plane waves in rotating media,” J. Eng. Sci., 21, 155–163 (1983).CrossRefGoogle Scholar
  20. 20.
    S. K. Roychoudhuri, “Effect of rotation and relaxation times on plane waves in generalized thermoelasticity,” J. Elast., 15, 59–68 (1985).CrossRefGoogle Scholar
  21. 21.
    M. A. Ezzat and H. M. Youseef, “Generalized magneto-thermoelasticity in a perfectly conducting medium,” Int. J. Solids Struct., 42, 6319–6334 (2005).MATHCrossRefGoogle Scholar
  22. 22.
    N. C. Das, A. Lahiri, and S. Dutta, “Eigenvalue approach to thermal stresses in an orthotropic elastic slab due to prescribed surface temperature,” Bull. Calif. Math. Soc., 94, No. 5, 389–400 (2002).MATHGoogle Scholar
  23. 23.
    A. M. El-Naggara, A. M. Abd-Alla, and M. A. Fahmy, “The propagation of thermal stresses in an infinite elastic slab,” Appl. Math. Comp., 127, No. 2, 307–312 (2004).CrossRefGoogle Scholar
  24. 24.
    A. Lhiri, B. Das, and S. Sarkar, “Thermal stresses in an isotropic elastic slab due to prescribed surface temperature,” Adv. Theor. Appl. Mech., 3, No. 10, 451–467 (2010).Google Scholar
  25. 25.
    N. C. Das, A. Lahiri, and S. Sarkar, “Eigenvalue approach to generalized thermoelasticity with temperature dependent modulus of elasticity in transversely isotropic elastic medium,” Bull. Calif. Math. Soc., 100, No. 4, 411–426 (2008).Google Scholar
  26. 26.
    N. C. Das and P. C. Bhakata, “Eigenfunction expansion method to the solution of simultaneous equations and its application in mechanics,” Mech. Res. Commun., 12, 19–29 (1985).MATHCrossRefGoogle Scholar
  27. 27.
    N. C. Das, A. Lahiri, and R. R. Giri, “Eigenvalue approach to generalized thermoelasticity,” Indian. J. Pure Appl. Math., 28, 1573–1594 (1997).MathSciNetMATHGoogle Scholar
  28. 28.
    R. S. Dhaliwal and A. Singh, Dynamic Coupled Thermoelasticity, Hindustan Publ., Delhi (1980).Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of MathematicsJadavpur UniversityKolkataIndia

Personalised recommendations