Advertisement

Computational Mathematics and Modeling

, Volume 21, Issue 4, pp 391–401 | Cite as

Classification of linear controlled systems under state and input transformations

  • N. I. Osetinskii
Article
  • 26 Downloads

The article investigates issues of classification of linear controlled systems under a change of coordinates in their state and input spaces. The classification problem is completely solved for n-dimensional systems with (n − 1)-dimensional inputs; polynomial relative \( G{L_n}\left( \mathbb{C} \right) \times G{L_m}\left( \mathbb{C} \right) \)-invariants on the space of controlled systems are computed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. I. Hazewinkel and R. E. Kalman, “On invariants, canonical forms and moduli for linear, constant, finite dimensional dynamical systems,” Lect. Notes Econ. and Math. Syst. Theory, 131, 48–60 (1976).MathSciNetGoogle Scholar
  2. 2.
    F. S. Vainshtein and N. I. Osetinskii, “Classification of systems under state and input transformations,” in: Itogi Nauki i Tekhniki, series: Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 29, pp. 101–120 (1995).Google Scholar
  3. 3.
    N. I. Osetinskii, “Some classification problems in the theory of linear dynamical systems,” in: Theory of Complex Systems and Modeling Methods [Russian translation], Mir, Moscow (1988), pp. 58–76.Google Scholar
  4. 4.
    A. Tannenbaum, “On the stabilizer subgroups of a pair of matrices,” Linear Algebra and Appl., 50, 527–544 (1983).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    F. S. Vainshtein and N. I. Osetinskii, “Some classification problems for controlled systems and similarity of square matrices,” Different. Uravnen., 40, No. 11, 1771–1779 (2004).MathSciNetGoogle Scholar
  6. 6.
    N. I. Osetinskii, “Methods of invariant analysis of linear controlled systems,” in: Itogi Nauki i Tekhniki, series: Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory, Vol. 29 (1995), pp. 5–99.Google Scholar
  7. 7.
    A. Tannenbaum, Invariance and System Theory: Algebraic and Geometric Aspects, Lect. Notes Math., Vol. 845, Springer, Berlin (1981).MATHGoogle Scholar
  8. 8.
    A. Roca and I. Zaballa, “Invariant factor assignment under state feedback and output injection,” Linear Algebra and Its Applications, 8–334, No. 1–3, 401–436 (2001).CrossRefMathSciNetGoogle Scholar
  9. 9.
    I. Cabral, F. C. Silva, and I. Zaballa, “Feedback invariants of a pair of matrices with prescribed columns,” Linear Algebra and Its Applications, 8–334, No. 1–3, 447–458 (2001).CrossRefMathSciNetGoogle Scholar
  10. 10.
    M. S. Ravi, J. Rosenthal, and U. Helmke, “Output feedback invariants,” Linear Algebra and Its Applications, 351–352, 623–637 (2002).CrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Domokos and A. N. Zubkov, “Semi-invariants of quivers as determinants,” Transformation Groups, 6, No. 1, 9–24 (2001).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    E. B. Vinberg and V. L. Popov, “Invariant theory,” in: Itogi Nauki i Tekhniki. Series: Sovremennye Problemy Matematiki, Vol. 55 (1989), pp. 137–309.Google Scholar
  13. 13.
    H. Kraft, Geometrical Methods in Invariant Theory [Russian translation], Mir, Moscow (1987).Google Scholar
  14. 14.
    D. Hinrichsen and D. Prätzel-Wolters, “A canonical form for static linear output feedback,” Lect. Notes Contr. and Inf. Sci., 58, 441–462 (1984).CrossRefGoogle Scholar
  15. 15.
    D. Hinrichsen and D. Prätzel-Wolters, “State and input transformations for reachable systems—a polynomial approach,” Contemp. Math., 47, 217–239 (1985).Google Scholar
  16. 16.
    D. Hinrichsen and D. Prätzel-Wolters, “A wild quiver in linear systems theory,” Linear Algebra and Appl., 91, 143–175 (1987).MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    P. E. Newstead, Lectures on Introduction to Moduli Problems and Orbit Spaces, Springer, Berlin (1978).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2010

Authors and Affiliations

  • N. I. Osetinskii

There are no affiliations available

Personalised recommendations