Computational Mathematics and Modeling

, Volume 19, Issue 1, pp 23–38 | Cite as

Synthesis of controllers for damping oscillations in dynamical systems under uncertainty

  • D. V. Balandin
  • M. M. Kogan


We review the modern approaches to the synthesis of robust H controllers that ensure optimal damping of oscillations in dynamical systems under uncertainty. In the synthesis method based on Riccati equations, these many-parameter equations can be solved only when the parameters are contained in a bounded parallelepiped with given boundaries. The synthesis of a robust H output control for systems with unknown bounded parameters is reducible to the solution of an optimization problem constrained by a system of linear matrix inequalities. The proposed controller synthesis algorithms are implemented using standard MATLAB procedures. The efficiency of the proposed methods and algorithms is demonstrated in application to optimal damping of oscillations in a parametrically excited pendulum.


Control Problem Linear Matrix Inequality Feasible Region Riccati Equation Auxiliary Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. V. Emel’yanov and S. K. Korovin, New Types of Feedback: Control Under Uncertainty [Russian translation], Mir, Moscow (1997).Google Scholar
  2. 2.
    J. C. Doyle, K. Glover, P. P. Khargonekar et al., “State-space solutions to standard H 2 and H control problems,” IEEE Trans. Autom. Control, 34, No. 8, 831–847 (1989).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    T. Iwasaki and R. E. Skelton, “All controllers for the general H control problem: LMI existence conditions and state space formulas,” Automatica, 30, No. 8, 1307–1317 (1994).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    P. Gahinet and P. Apkarian, “A linear matrix inequality approach to H control,” Int. J. Robust Nonlin. Control, 4, 421–448 (1994).MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    P. Gahinet, A. Nemirovski, A. Laub, and M. Chilali, LMI Control Toolbox for Use with MATLAB, The Math Works, Natick, MA (1995).Google Scholar
  6. 6.
    A. V. Savkin and I. R. Petersen, “A connection between H control and the absolute stability of uncertain systems,” Syst. Control Lett., 23, 197–203 (1994).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. M. Kogan, “Synthesis of robust H suboptimal controllers as a solution of a differential game under uncertainty: direct and inverse problems,” Avtomat. Telemekh., No. 7, 109–120 (2000).Google Scholar
  8. 8.
    J. C. Doyle, “Synthesis of robust controllers and filters with structured plant uncertainty,” in: Proc. IEEE Conf. Decision Control, San Antonio, TX (1983).Google Scholar
  9. 9.
    A. Megretski, “Necessary and sufficient condition of stability: a multi-loop generalization of the circle criterion,” IEEE Trans. Autom. Control, 38, 753–756 (1993).MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    M. G. Safonov, “L optimal sensitivity versus stability margin,” in: Proc. IEEE Conf. Decision Control, San Antonio, TX (1983).Google Scholar
  11. 11.
    J. C. Shamma, “Robust stability with time-varying structured uncertainty,” IEEE Trans. Autom. Control, 39, 714–724 (1994).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    D. V. Balandin and M. M. Kogan, “Bound on limiting performance of robust H control in linear uncertain systems”, Avtomat. Telemekh., No. 9, 134–141 (2002).Google Scholar
  13. 13.
    D. V. Balandin and M. M. Kogan, “Two-sided bounds of minimum robust H norm for uncertain controlled systems,” Avtomat. Telemekh., No. 1, 105–113 (2003).Google Scholar
  14. 14.
    D. V. Balandin and M. M. Kogan, “On necessary solvability conditions of the multiparameter Riccati equations in the robust H output control problem,” Different. Uravnen., No. 11, 1452–1456 (2003).Google Scholar
  15. 15.
    D. V. Balandin and M. M. Kogan, “Computing the minimum damping level for external perturbations in the robust H output control problem,” Avtomat. Telemekh., No. 11, 128–137 (2003).Google Scholar
  16. 16.
    D. V. Balandin and M. M. Kogan, “Nonsolvability conditions for the H control problem,” Dokl. RAN, 391, No. 1, 29–31 (2003).MATHMathSciNetGoogle Scholar
  17. 17.
    D. V. Balandin and M. M. Kogan, “Optimal damping of perturbations in uncertain controlled systems,” Izv. RAN, Control Theory and Systems, No. 1, 102–109 (2004).Google Scholar
  18. 18.
    D. V. Balandin, “Limiting control performance in linear systems and a bound on the minimum H norm,” Izv. RAN, Control Theory and Systems, No. 6, 50–56 (2001).Google Scholar
  19. 19.
    P. Apkarian and P. Gahinet, “A convex characterization of gain-scheduled H controllers,” IEEE Trans. Autom. Control, 40, No. 5, 853–864 (1995).MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Y. Yamada and S. Hara, “Global optimization for H control with constant diagonal scaling,” IEEE Trans. Autom. Control, 43, No. 2, 191–203 (1998).MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    P. Apkarian and H. D. Tuan, “Robust control via concave minimization local and global algorithms,” IEEE Trans. Autom. Control, 45, No. 2, 299–305 (2000).MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    L. El Ghaoui, V. Balakrishnan, E. Feron, and S. P. Boyd, “On maximizing a robustness measure for structured nonlinear perturbations,” in: Proc. Amer. Control Conf., Chicago (1992), pp. 2923–2924.Google Scholar
  23. 23.
    A. Packard, K. Zhou, P. Pandey, J. Leonhardson et al., “Optimal constant I/O similarity scaling for full-information and state feedback control problems,” Syst. Control Lett., 19, 271–280 (1992).MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    D. V. Balandin and M. M. Kogan, “Synthesis of optimal robust H control by convex optimization methods,” Avtomat. Telemekh., No. 7, 71–81 (2004).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • D. V. Balandin
  • M. M. Kogan

There are no affiliations available

Personalised recommendations