Advertisement

Computational Mathematics and Modeling

, Volume 18, Issue 2, pp 107–120 | Cite as

Positional robust inversion in nonlinear dynamical systems

  • A. V. Il’in
  • S. K. Korovin
  • V. V. Fomichev
Article
  • 26 Downloads

Abstract

The article studies robust inversion of nonlinear dynamical systems using a known phase vector. Inversion algorithms are proposed for the case when the system dynamics is exactly known. These algorithms solve the inversion problem with any prespecified accuracy. Algorithms solving the inversion problem with perturbed system dynamics are also considered. Accuracy bounds are obtained for the various algorithms.

Keywords

Nonlinear Dynamical System Inversion Algorithm Unknown Signal Inversion Problem Phase Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. D. Krut’ko, Inverse Problems in Controlled System Dynamics. Nonlinear Models [in Russian], Nauka, Moscow (1988).Google Scholar
  2. 2.
    P. D. Krut’ko, “Construction of control algorithms for nonlinear systems using the paradigm of dynamical inverse problems. Systems with one degree of freedom,” Izv. Akad. Nauk SSSR, Tekhn. Kibern., No. 3, 130–142 (1986).Google Scholar
  3. 3.
    P. D. Krut’ko, “Construction of control algorithms for nonlinear systems using the paradigm of dynamical inverse problems. Control of motion relative to the center of mass,” Izv. Akad. Nauk SSSR, Tekhn. Kibern., No. 2, 175–181 (1987).Google Scholar
  4. 4.
    P. D. Krut’ko and N. A. Lakota, “The method of dynamical inverse problems and the theory of construction of control algorithms for manipulative robots. Achieving the target trajectories,” Izv. Akad. Nauk SSSR, Tekhn. Kibern., No. 4, 190–199 (1987).Google Scholar
  5. 5.
    P. D. Krut’ko, Inverse Problems in Controlled System Dynamics. Linear Models [in Russian], Nauka, Moscow (1988).Google Scholar
  6. 6.
    Yu. S. Osipov and A. V. Kryazhimskii, Izv. Akad. Nauk SSSR, Tekhn. Kibern., 269, No. 3, 552–556 (1983).MathSciNetGoogle Scholar
  7. 7.
    Yu. S. Osipov and A. V. Kryazhimskii, Izv. Akad. Nauk SSSR, Tekhn. Kibern., 269, No. 2, 51–60, (1983).MathSciNetGoogle Scholar
  8. 8.
    S. Devasia, D. Chen, and B. Paden, “Nonlinear inversion-based output tracking,” IEEE Trans. Autom. Contr., AC41, 930–942 (1996).CrossRefMathSciNetGoogle Scholar
  9. 9.
    R. M. Hirschorn, “Invertibility of nonlinear control systems,” SIAM J. Contr. Optim., 17, No. 2, 289–297.Google Scholar
  10. 10.
    S. N. Singh, “A modified algorithm for invertibility in nonlinear systems,” IEEE Trans. Autom. Contr., AC-26, No. 2, 595–598 (1981).CrossRefGoogle Scholar
  11. 11.
    A. V. Il’in, S. K. Korovin, and V. V. Fomichev, “Inversion algorithms for linear scalar dynamical systems: controlled model method,” Different. Uravn., 33, No. 3, 329–339 (1997).MathSciNetGoogle Scholar
  12. 12.
    A. V. Il’in, S. K. Korovin, and V. V. Fomichev, “Inversion algorithms for linear controlled systems,” Different. Uravn., 34, No. 6, 744–750 (1997).MathSciNetGoogle Scholar
  13. 13.
    A. V. Il’in, S. K. Korovin, and V. V. Fomichev, “Robust inversion of vector systems,” Different. Uravn., 34, No. 11, 1478–1486 (1998).MATHMathSciNetGoogle Scholar
  14. 14.
    S. K. Korovin, A. V. Il’in, and V. V. Fomichev, “Robust inversion of controlled linear systems,” Dokl. RAN, 356, No. 2, 121–123 (1998).Google Scholar
  15. 15.
    S. K. Korovin, A. V. Il’in, and V. V. Fomichev, “Controlled model method for inversion of dynamical systems,” Dokl. RAN, 354, No. 2, 171–173 (1997).MATHMathSciNetGoogle Scholar
  16. 16.
    A.V. Il’in, Robust Inversion Algorithms for Nonlinear Dynamical Systems [in Russian], Abstract of Candidate Dissertation, Moscow (1999).Google Scholar
  17. 17.
    V. V. Fomichev, “Some algorithms for inversion of linear dynamical systems,” in: Control and Identification Algorithms [in Russian], Dialog-MGU, Moscow (1997), pp. 156–167.Google Scholar
  18. 18.
    W. Respondek, “Linearization, feedback, and Lie brackets,” in: Geometric Theory of Nonlinear Control Systems (International Conference), Wroclaw Tech. Univ. Press (1985), pp. 131–166.Google Scholar
  19. 19.
    A. V. Il’in, A. P. Nosov, and V. V. Fomichev, “Asymptotically exact inversion of uncertain dynamical systems,” Prikl. Matem. Informatika, Dialog-MGU, Moscow (1999), pp. 20–32.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • A. V. Il’in
  • S. K. Korovin
  • V. V. Fomichev

There are no affiliations available

Personalised recommendations