An optimization approach for flow simulations in poro-fractured media with complex geometries

Abstract

A new discretization approach is presented for the simulation of flow in complex poro-fractured media described by means of the Discrete Fracture and Matrix Model. The method is based on the numerical optimization of a properly defined cost-functional and allows to solve the problem without any constraint on mesh generation, thus overcoming one of the main complexities related to efficient and effective simulations in realistic DFMs.

References

  1. 1.

    Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005). https://doi.org/10.1137/S1064827503429363

    Article  Google Scholar 

  2. 2.

    Boon, W., Nordbotten, J., Yotov, I.: Robust discretization of flow in fractured porous media. SIAM J. Numer. Anal. 56(4), 2203–2233 (2018). https://doi.org/10.1137/17M1139102

    Article  Google Scholar 

  3. 3.

    Qi, D., Hesketh, T.: An analysis of upscaling techniques for reservoir simulation. Pet. Sci. Technol. 23(7-8), 827–842 (2005). https://doi.org/10.1081/LFT-200033132

    Article  Google Scholar 

  4. 4.

    Chen, Z., Huan, G., Ma, Y.: Computational methods for multiphase flows in porous media. SIAM, Philadelphia, PA, USA (2006)

  5. 5.

    Li, L., Lee, S.H.: Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media. SPE Reservoir Evaluation & Engineering 11(4), 750–758 (2008). https://doi.org/10.2118/103901-PA

    Article  Google Scholar 

  6. 6.

    Moinfar, A., Varavei, A., Sepehrnoori, K., Johns, R.: Development of an efficient embedded discrete fracture model for 3d compositional reservoir simulation in fractured reservoirs. SPE J., 19(2) (2014)

  7. 7.

    Fumagalli, A., Pasquale, L., Zonca, S., Micheletti, S.: An upscaling procedure for fractured reservoirs with embedded grids. Water Resour. Res. 52(8), 6506–6525 (2015). https://doi.org/10.1002/2015WR017729

    Article  Google Scholar 

  8. 8.

    Angot, P., Boyer, F., Hubert, F.: Asymptotic and numerical modelling of flows in fractured porous media. ESAIM: M2AN 43(2), 239–275 (2009)

    Article  Google Scholar 

  9. 9.

    Ahmed, R., Edwards, M.G., Lamine, S., Huisman, B.A.H., Pal, M.: Control-volume distributed multi-point flux approximation coupled with a lower-dimensional fracture model. J. Comput. Phys. 284, 462–489 (2015). https://doi.org/10.1016/j.jcp.2014.12.047

    Article  Google Scholar 

  10. 10.

    Brenner, K., Groza, M., Guichard, C., Lebeau, G., Masson, R.: Gradient discretization of hybrid dimensional darcy flows in fractured porous media. Numer. Math. 134(3), 569–609 (2016). https://doi.org/10.1007/s00211-015-0782-x

    Article  Google Scholar 

  11. 11.

    Antonietti, P.F., Formaggia, L., Scotti, A., Verani, M., Verzott, N.: Mimetic finite difference approximation of flows in fractured porous media. ESAIM: M2AN 50(3), 809–832 (2016)

    Article  Google Scholar 

  12. 12.

    Berrone, S., Pieraccini, S., Scialò, S: Flow simulations in porous media with immersed intersecting fractures. J. Comput. Phys. 345, 768–791 (2017). https://doi.org/10.1016/j.jcp.2017.05.049

    Article  Google Scholar 

  13. 13.

    Odsæter, L.H., Kvamsdal, T., Larson, M.G.: A simple embedded discrete fracture-matrix model for a coupled flow and transport problem in porous media. Comput. Methods Appl. Mech. Eng. 343, 572–601 (2019). https://doi.org/10.1016/j.cma.2018.09.003

    Article  Google Scholar 

  14. 14.

    Antonietti, P.F., Facciolà, C., Russo, A., Verani, M.: Discontinuous Galerkin approximation of flows in fractured porous media on polytopic grids. SIAM J. Sci. Comput. 41(1), A109–A138 (2019). https://doi.org/10.1137/17M1138194

    Article  Google Scholar 

  15. 15.

    Chernyshenko, A.Y., Olshanskii, M.A.: An unfitted finite element method for the darcy problem in a fracture network. J. Comput. Appl. Math. 366, 112424 (2020). https://doi.org/10.1016/j.cam.2019.112424

    Article  Google Scholar 

  16. 16.

    Fumagalli, A., Scotti, A.: A numerical method for two-phase flow in fractured porous media with non-matching grids. Adv. Water Resour. 62, 454–464 (2013). https://doi.org/10.1016/j.advwatres.2013.04.001

    Article  Google Scholar 

  17. 17.

    Formaggia, L., Fumagalli, A., Scotti, A., Ruffo, P.: A reduced model for Darcy’s problem in networks of fractures. ESAIM: Mathematical Modelling and Numerical Analysis 48(4), 1089–1116 (2014007). https://doi.org/10.1051/m2an/2013132

    Article  Google Scholar 

  18. 18.

    Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys. 257, 1163–1227 (2014)

    Article  Google Scholar 

  19. 19.

    Al-Hinai, O., Srinivasan, S., Wheeler, M.F.: Mimetic finite differences for flow in fractures from microseismic data. In: SPE reservoir simulation symposium. Society of Petroleum Engineers (2015)

  20. 20.

    Chave, F.A., Di Pietro, D.A., Formaggia, L.: A Hybrid High-Order method for Darcy flows in fractured porous media . SIAM Journal on Scientific Computing 40(2), A1063–A1094 (2018). https://doi.org/10.1137/17M1119500

    Article  Google Scholar 

  21. 21.

    Sandve, T.H., Berre, I., Nordbotten, J.M.: An efficient multi-point flux approximation method for discrete fracture-matrix simulations. J. Comput. Phys. 231(9), 3784–3800 (2012). https://doi.org/10.1016/j.jcp.2012.01.023

    Article  Google Scholar 

  22. 22.

    Faille, I., Fumagalli, A., Jaffré, J, Roberts, J.E.: Model reduction and discretization using hybrid finite volumes for flow in porous media containing faults. Comput. Geosci. 20(2), 317–339 (2016). https://doi.org/10.1007/s10596-016-9558-3

    Article  Google Scholar 

  23. 23.

    Berrone, S., Borio, A., Fidelibus, C., Pieraccini, S., Scialò, S, Vicini, F.: Advanced computation of steady-state fluid flow in discrete fracture-matrix models: FEM–BEM and VEM–VEM fracture-block coupling. GEM - International Journal on Geomathematics 9(2), 377–399 (2018). https://doi.org/10.1007/s13137-018-0105-3

    Article  Google Scholar 

  24. 24.

    Fumagalli, A., Keilegavlen, E.: Dual virtual element methods for discrete fracture matrix models. Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 41 (2019)

    Article  Google Scholar 

  25. 25.

    Coulet, J., Faille, I., Girault, V., Guy, N., Nataf, F.: A fully coupled scheme using virtual element method and finite volume for poroelasticity. Comput. Geosci. (2019)

  26. 26.

    Benedetto, M.F., Borio, A., Kyburg, F., Mollica, J., Scialò, S: An arbitrary order Mixed Virtual Element formulation for coupled multi-dimensional flow problems. arXiv:2001.11309 (2020)

  27. 27.

    Berrone, S., Pieraccini, S., Scialò, S.: A PDE-constrained optimization formulation for discrete fracture network flows. SIAM J. Sci. Comput. 35(2), B487–B510 (2013). https://doi.org/10.1137/120865884

    Article  Google Scholar 

  28. 28.

    Berrone, S., Pieraccini, S., Scialò, S.: On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput. 35(2), A908–A935 (2013). https://doi.org/10.1137/120882883

    Article  Google Scholar 

  29. 29.

    Berrone, S., Borio, A., Scialò, S.: A posteriori error estimate for a PDE-constrained optimization formulation for the flow in DFNs. SIAM J. Numer. Anal. 54 (1), 242–261 (2016). https://doi.org/10.1137/15M1014760

    Article  Google Scholar 

  30. 30.

    Berrone, S., Scialò, S., Vicini, F.: Parallel meshing, discretization and computation of flow in massive Discrete Fracture Networks. SIAM J. Sci. Comput. 41(4), C317–C338 (2019). https://doi.org/10.1137/18M1228736

    Article  Google Scholar 

  31. 31.

    Berrone, S., Borio, A., Vicini, F.: Reliable a posteriori mesh adaptivity in discrete fracture network flow simulations. Comput. Methods Appl. Mech. Eng. 354, 904–931 (2019). https://doi.org/10.1016/j.cma.2019.06.007

    Article  Google Scholar 

  32. 32.

    Berrone, S., D’Auria, A., Vicini, F.: Fast and robust flow simulations in discrete fracture networks with GPGPUs. GEM - International Journal on Geomathematics 10(1), 8 (2019)

    Article  Google Scholar 

  33. 33.

    Horn, R.A., Johnson, C.R.: Matrix analysis. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  34. 34.

    Nocedal, J., Wright, S.J.: Numerical optimization, Second. Springer, New York (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the MIUR project “Dipartimenti di Eccellenza 2018-2022” (CUP E11G18000350001), PRIN project “Virtual Element Methods: Analysis and Applications” (201744KLJL_004), by INdAM-GNCS and by SmartData@polito.

Funding

Open Access funding provided by Politecnico di Torino.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefano Scialò.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Members of the INdAM research group GNCS

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berrone, S., D’Auria, A. & Scialò, S. An optimization approach for flow simulations in poro-fractured media with complex geometries. Comput Geosci (2021). https://doi.org/10.1007/s10596-020-10029-8

Download citation

Keywords

  • 3D flows
  • Darcy flows
  • Matrix-fracture coupled flows
  • Optimization methods for elliptic problems
  • Non-conforming FEM meshes
  • 2D-3D flow coupling

Mathematics Subject Classification (2010)

  • 65N30
  • 65N50
  • 68U20
  • 86-08