Postprocessing of standard finite element velocity fields for accurate particle tracking applied to groundwater flow


Particle tracking is a computationally advantageous and fast scheme to determine travel times and trajectories in subsurface hydrology. Accurate particle tracking requires element-wise mass-conservative, conforming velocity fields. This condition is not fulfilled by the standard linear Galerkin finite element method (FEM). We present a projection, which maps a non-conforming, element-wise given velocity field, computed on triangles and tetrahedra, onto a conforming velocity field in lowest-order Raviart-Thomas-Nédélec (\(\mathcal {RTN}_{0}\)) space, which meets the requirements of accurate particle tracking. The projection is based on minimizing the difference in the hydraulic gradients at the element centroids between the standard FEM solution and the hydraulic gradients consistent with the \(\mathcal {RTN}_{0}\) velocity field imposing element-wise mass conservation. Using the conforming velocity field in \(\mathcal {RTN}_{0}\) space on triangles and tetrahedra, we present semi-analytical particle tracking methods for divergent and non-divergent flow. We compare the results with those obtained by a cell-centered finite volume method defined for the same elements, and a test case considering hydraulic anisotropy to an analytical solution. The velocity fields and associated particle trajectories based on the projection of the standard FEM solution are comparable to those resulting from the finite volume method, but the projected fields are smoother within zones of piecewise uniform hydraulic conductivity. While the \(\mathcal {RTN}_{0}\)-projected standard FEM solution is thus more accurate, the computational costs of the cell-centered finite volume approach are considerably smaller.


  1. 1.

    Aquanty, Inc. Hydrogeosphere. A Three-Dimensional Numerical Model Describing Fully-Integrated Subsurface and Surface Flow and Solute Transport: User Manual. Tech. Rep., Aquanty, Inc., ON, Ontario (2015)

  2. 2.

    Atchley, A.L., Maxwell, R.M., Navarre-Sitchler, A.K.: Using streamlines to simulate stochastic reactive transport in heterogeneous aquifers: kinetic metal release and transport in CO2 impacted drinking water aquifers. Adv. Water Resour. 52, 93–106 (2013).

    Google Scholar 

  3. 3.

    Bahriawati, C., Carstensen, C.: Three Matlab implementations of the lowest-order Raviart-Thomas MFEM with a posteriori error control. Comput. Methods Appl. Math. 5(4), 333–361 (2005).

    Google Scholar 

  4. 4.

    Bear, J., Cheng, A.H.D.: Modeling Groundwater Flow and Contaminant Transport. Vol. 23 of Theory and Applications of Transport in Porous Media. Springer, Heidelberg (2010).

    Google Scholar 

  5. 5.

    Bellin, A., Salandin, P., Rinaldo, A.: Simulation of dispersion in heterogeneous porous formations: statistics, first-order theories, convergence of computations. Water Resour. Res. 28(9), 2211–2227 (1992).

    Google Scholar 

  6. 6.

    Bennett, J.P., Haslauer, C.P., Cirpka, O.A.: The impact of sedimentary anisotropy on solute mixing in stacked scour-pool structures. Water Resour. Res. 53(4), 2813–2832 (2017).

    Google Scholar 

  7. 7.

    Brezzi, F., Douglas, J., Durán, R., Fortin, M.: Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51(2), 237–250 (1987).

    Google Scholar 

  8. 8.

    Brezzi, F., Douglas, J., Marini, L.D.: Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47(2), 217–235 (1985).

    Google Scholar 

  9. 9.

    Cirpka, O. A., Chiogna, G., Rolle, M., Bellin, A.: Transverse mixing in three-dimensional nonstationary anisotropic heterogeneous porous media. Water Resour. Res. 51(1), 241–260 (2015).

    Google Scholar 

  10. 10.

    Cirpka, O.A., Frind, E.O., Helmig, R.: Numerical methods for reactive transport on rectangular and streamline-oriented grids. Adv. Water Resour. 22(7), 711–728 (1999).

    Google Scholar 

  11. 11.

    Cordes, C., Kinzelbach, W.: Continuous groundwater velocity fields and path lines in linear, bilinear, and trilinear finite elements. Water Resour. Res. 28(11), 2903–2911 (1992).

    Google Scholar 

  12. 12.

    Cordes, C., Kinzelbach, W.: Comment on ”Application of the mixed hybrid finite element approximation in a groundwater flow model: Luxury or necessity?” by R. Mosé, P. Siegel, P. Ackerer, and G. Chavent. Water Resour. Res. 32(6), 1905–1909 (1996).

    Google Scholar 

  13. 13.

    Crane, M.J., Blunt, M.J.: Streamline-based simulation of solute transport. Water Resour. Res. 35(10), 3061–3078 (1999)

    Google Scholar 

  14. 14.

    Davis, T.A.: A column pre-ordering strategy for the unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. (TOMS) 30(2), 165–195 (2004).

    Google Scholar 

  15. 15.

    Durlofsky, L.J.: Accuracy of mixed and control volume finite element approximations to Darcy velocity and related quantities. Water Resour. Res. 30(4), 965–973 (1994).

    Google Scholar 

  16. 16.

    Edwards, M.G.: Unstructured, control-volume distributed, full-tensor finite-volume schemes with flow based grids. Comput. Geosci. 6(3), 433–452 (2002).

    Google Scholar 

  17. 17.

    Forsyth, P.: A control volume finite element approach to NAPL groundwater contamination. SIAM J. Sci. Stat. Comput. 12(5), 1029–1057 (1991).

    Google Scholar 

  18. 18.

    Friis, H., Edwards, M., Mykkeltveit, J.: Symmetric positive definite flux-continuous full-tensor finite-volume schemes on unstructured cell-centered triangular grids. SIAM J. Sci. Comput. 31(2), 1192–1220 (2009).

    Google Scholar 

  19. 19.

    Ginn, T.R.: Stochastic-convective transport with nonlinear reactions and mixing: finite streamtube ensemble formulation for multicomponent reaction systems with intra-streamtube dispersion. J. Contam. Hydrol. 47(1-2), 1–28 (2001).

    Google Scholar 

  20. 20.

    Hoteit, H., Erhel, J., Mosé, R., Philippe, B., Ackerer, P.: Numerical reliability for mixed methods applied to flow problems in porous media. Comput. Geosci. 6(2), 161–194 (2002).

    Google Scholar 

  21. 21.

    Hughes, T.J., Engel, G., Mazzei, L., Larson, M.G.: The continuous Galerkin method is locally conservative. J. Comput. Phys. 163(2), 467–488 (2000).

    Google Scholar 

  22. 22.

    Huyakorn, P.S., Pinder, G.F.: Computational Methods in Subsurface Flow. Academic Publishers, New York (1983)

    Google Scholar 

  23. 23.

    Juanes, R., Matringe, S.F.: Unified formulation for high-order streamline tracing on two-dimensional unstructured grids. J. Sci. Comput. 38(1), 50–73 (2009).

    Google Scholar 

  24. 24.

    Kees, C.E., Farthing, M.W., Dawson, C.N.: Locally conservative, stabilized finite element methods for variably saturated flow. Comput. Methods Appl. Mech. Eng. 197(51), 4610–4625 (2008).

    Google Scholar 

  25. 25.

    Kinzelbach, W.: Numerische Methoden zur Modellierung des Transports von Schadstoffen im Grundwasser. Vol. 21 of Schriftenreihe GWF Wasser - Abwasser. R. Oldenbourg, München (1992)

    Google Scholar 

  26. 26.

    Kinzelbach, W., Ackerer, P.: Modelisation de la propagation d’un contaminant dans un champ d’ecoulement transitoire. Hydrogeologie 2, 197–205 (1986)

    Google Scholar 

  27. 27.

    Larson, M.G., Niklasson, A.J.: A conservative flux for the continuous Galerkin method based on discontinuous enrichment. CALCOLO 41(2), 65–76 (2004).

    Google Scholar 

  28. 28.

    Loschko, M., Wöhling, T., Rudolph, D.L., Cirpka, O.A.: Accounting for the decreasing reaction potential of heterogeneous aquifers in a stochastic framework of aquifer-scale reactive transport. Water Resour. Res. 54(1), 442–463 (2018).

    Google Scholar 

  29. 29.

    Matringe, S.F., Juanes, R., Tchelepi, H.A.: Robust streamline tracing for the simulation of porous media flow on general triangular and quadrilateral grids. J. Comput. Phys. 219(2), 992–1012 (2006).

    Google Scholar 

  30. 30.

    Nédélec, J.C.: Mixed finite elements in \(\mathbb {R}^{3}\). Numer. Math. 35(3), 315–341 (1980).

    Google Scholar 

  31. 31.

    Nédélec, J.C.: A new family of mixed finite elements in \(\mathbb {R}^{3}\). Numer. Math. 50(1), 57–81 (1986).

    Google Scholar 

  32. 32.

    Ngo, A.Q.T., Bastian, P., Ippisch, O.: Numerical solution of steady-state groundwater flow and solute transport problems: discontinuous Galerkin based methods compared to the Streamline Diffusion approach. Comput. Methods Appl. Mech. Eng. 294, 331–358 (2015).

    Google Scholar 

  33. 33.

    Odsæter, L.H., Wheeler, M.F., Kvamsdal, T., Larson, M.G.: Postprocessing of non-conservative flux for compatibility with transport in heterogeneous media. Comput. Methods Appl. Mech. Eng. 315, 799–830 (2017).

    Google Scholar 

  34. 34.

    Pollock, D.W.: Semianalytical computation of path lines for Finite-Difference models. Groundwater 26(6), 743–750 (1988).

    Google Scholar 

  35. 35.

    Povich, T.J., Dawson, C.N., Farthing, M.W., Kees, C.E.: Finite element methods for variable density flow and solute transport. Comput. Geosci. 17(3), 529–549 (2013).

    Google Scholar 

  36. 36.

    Putti, M., Cordes, C.: Finite element approximation of the diffusion operator on tetrahedra. SIAM J. Sci. Comput. 19(4), 1154–1168 (1998).

    Google Scholar 

  37. 37.

    Putti, M., Sartoretto, F.: Linear Galerkin vs mixed finite element 2D flow fields. Int. J. Numer. Methods Fluids 60(9), 1011–1031 (2009).

    Google Scholar 

  38. 38.

    Raviart, P.A., Thomas, J.M.: A Mixed Finite Element Method for 2-nd Order Elliptic Problems. In: Galligani, I., Magenes, E. (eds.) Mathematical Aspects of Finite Element Methods, pp. 292–315. Springer, Berlin (1977)

  39. 39.

    Rognes, M., Kirby, R., Logg, A.: Efficient assembly of H(div) and H(curl) conforming finite elements. SIAM J. Sci. Comput. 31(6), 4130–4151 (2009).

    Google Scholar 

  40. 40.

    Schiavazzi, D.: Redundant Multiresolution Uncertainty Propagation. PhD Thesis. University of Padova, Padova (2013)

    Google Scholar 

  41. 41.

    Scudeler, C., Putti, M., Paniconi, C.: Mass-conservative reconstruction of galerkin velocity fields for transport simulations. Adv. Water Resour. 94, 470–485 (2016).

    Google Scholar 

  42. 42.

    Shewchuk, J.R.: Accessed: 30.10.2018 (2005)

  43. 43.

    Sun, S., Wheeler, M.F.: Projections of velocity data for the compatibility with transport. Comput. Methods Appl. Mech. Eng. 195(7), 653–673 (2006).

    Google Scholar 

  44. 44.

    Tompson, A.F.B., Gelhar, L.W.: Numerical simulation of solute transport in three-dimensional, randomly heterogeneous porous media. Water Resour. Res. 26(10), 2541–2562 (1990).

    Google Scholar 

Download references


We like to thank Ole Klein from the Interdisciplinary Center for Scientific Computing at Heidelberg University for a very insightful discussion on finite element methods and the numerics behind a possible \(\mathcal {RTN}_{0}\) projection. Furthermore, we are grateful to Max Allmendinger for proofreading the mathematical notation and several joyful discussions on mathematical topics.


This work was funded by the German Research Foundation (DFG) within the Research Training Group RTG 1829 “Integrated Hydrosystem Modelling” and the Collaborative Research Center CRC 1253 “CAMPOS-Catchments as Reactors.”

Author information



Corresponding author

Correspondence to Olaf A. Cirpka.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Using barycentric coordinates to find the starting element of a particle trajectory

Appendix: Using barycentric coordinates to find the starting element of a particle trajectory

Every point \(\hat {\mathbf {x}}_{s}\) within a simplex can be described by a linear combination of the coordinates of the nodes, \(\hat {\textbf {x}}_{i}\), and a barycentric, nodal weight, βi ≥ 0, respectively, such that

$$ \hat{\mathbf{x}}_{s}=\sum\limits_{i\in\mathcal{N}_{E}}{\upbeta}_{i}\hat{\mathbf{x}}_{i}, $$


$$ \sum\limits_{i\in\mathcal{N}_{E}}{\upbeta}_{i}=1,\quad\text{and}\quad{\upbeta}_{j}=1-\sum\limits_{i\neq j\in\mathcal{N}_{E}}{\upbeta}_{i}, $$

in which j is the index of a node and βj is its associated weight, such that every point in the simplex can be described by the coordinates of its nodes and d + 1 weights. Combining (57) and (58) leads to

$$ \begin{array}{@{}rcl@{}} \mathbf{T}\boldsymbol{\upbeta} & = & \hat{\textbf{x}}_{s}-\hat{\textbf{x}}_{j}, \end{array} $$
$$ \begin{array}{@{}rcl@{}} \Rightarrow\boldsymbol{\upbeta} & = & \mathbf{T}^{-1}\left( \hat{\textbf{x}}_{s}-\hat{\textbf{x}}_{j}\right), \end{array} $$

in which T is a transformation matrix only depending on the coordinates of the nodes; T− 1 can easily be evaluated analytically; β is the vector of the d independent, barycentric, nodal weights; and \(\hat {\textbf {x}}_{j}\) is the vector of coordinates of node j of the element.

We exploit the concept of barycentric coordinates in the search for the element in which the starting point of our particle tracking scheme resides. To do so, we set \(\mathbf {x}_{p}=\hat {\mathbf {x}}_{s}\) and solve equation (60) for every element. If a particle lies within an element, all weights β = (βi)i= 1,...,d+ 1 are within the interval 0 ≤βi ≤ 1 and sum up to unity. We stop the search at the first instance at which both criteria are met.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Selzer, P., Cirpka, O.A. Postprocessing of standard finite element velocity fields for accurate particle tracking applied to groundwater flow. Comput Geosci (2020).

Download citation


  • \(\mathcal {P}_{1}\) Galerkin finite element method
  • Lowest-order Raviart-Thomas-Nédélec space
  • Local mass conservation
  • Simplices
  • Groundwater flow

Mathematics subject classification (2010)

  • 76M10
  • 76M12
  • 76R05
  • 76S05