Skip to main content
Log in

Modeling the Neuman’s well function by an artificial neural network for the determination of unconfined aquifer parameters

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

An artificial neural network is designed as an improved alternative approach to the conventional type-curve matching technique for the determination of unconfined aquifer parameters. The network is implemented in a six-step protocol consisted of input selection, data splitting, design of network architecture, determination of network structure, network training, and network validation. The network is trained for the well function of unconfined aquifers by the back-propagation technique, adopting the Levenberg-Marquardt optimization algorithm. By applying a principal component analysis (PCA) on the training input data and through a trial-and-error procedure, the structure of the network is optimized with the topology of (3 × 6 × 3). The replicative, predictive, and structural validity of the developed network are evaluated with synthetic and real field data. The network eliminates graphical error inherent in the type-curve matching technique and provides an automatic and fast procedure for aquifer parameter estimation, particularly when analyzing many alternative pumping tests routinely obtained from continuous data loggers/data collection systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abrahart, R.J., Anctil, F., Coulibaly, P., Dawson, C.W., Mount, N.J., See, L.M., Shamseldin, A.Y., Solomatine, D.P., Toth, E., Wilby, R.L.: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting. Prog. Phys. Geogr. 36(4), 480–513 (2012)

    Article  Google Scholar 

  2. Almasari, M.N., Kalurachi, J.J.: Modular neural networks to predict the nitrate distribution in ground water using the on-ground nitrogen loading and recharge data. Environ. Model. Softw. 20, 851–871 (2005)

    Article  Google Scholar 

  3. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology: Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 5(2), 115–123 (2000)

    Article  Google Scholar 

  4. ASCE Task Committee on Application of Artificial Neural Networks in Hydrology: Artificial neural networks in hydrology. II: Hydrologic applications. J. Hydrol. Eng. 5(2), 124–137 (2000)

    Article  Google Scholar 

  5. Banerjee, P., Singh, V.S., Chatttopadhyay, K., Chandra, P.C., Singh, B.: Artificial neural network model as a potential alternative for groundwater salinity forecasting. J. Hydrol. 398, 212–220 (2011)

    Article  Google Scholar 

  6. Bennett, N.D., Croke, B.F.W., Guariso, G., Guillaume, J. H. A., Hamilton, S. H., Jakeman, A. J., Marsili-Libelli, S., Newham, L. T. H., Norton, J. P., Perrin, C., Pierce, S. A., Robson, B., Seppelt, R., Voinov, A. A., Fath, B. D., Andreassian, V.: Characterising performance of environmental models. Environ. Model. Softw. 40(0), 1–20 (2013)

    Article  Google Scholar 

  7. Boulton, N.S.: Unsteady radial flow to a pumped well allowing for delayed yield from storage. Int. Assn. Sci. Hydrol. 37, 472–477 (1954)

    Google Scholar 

  8. Cattell, R.B.: The Scree test for the number of factors. Multivar. Behav. Res. 1, 245–276 (1966)

    Article  Google Scholar 

  9. Chang, F.J., Kao, L.S., Kuo, Y.M., Liu, C.W.: Artificial neural networks for estimating regional arsenic concentrations in a black foot disease area in Taiwan. J. Hydrol. 388, 65–76 (2010)

    Article  Google Scholar 

  10. Chang, L.C., Chu, H.J., Hsiao, C.T.: Integration of optimal dynamic control and neural network for groundwater quality management. Water Resour. Manag. 26, 1253–1269 (2012)

    Article  Google Scholar 

  11. Chau, K.W.: An ontology-based knowledge management system for flow and water quality modeling. Adv. Eng. Softw. 38(3), 172–181 (2007)

    Article  Google Scholar 

  12. Cheng, C., Chau, K., Sun, Y., Lin, J.: Long-term prediction of discharges in Manwan reservoir using artificial neural network models. Lect. Notes Comput. Sci. (LNCS) 3498, 1040–1045 (2005)

    Article  Google Scholar 

  13. Coppola, E., Szidarovszky, F., Poulton, M., Charles, E.: Artificial neural networks approach for predicting transient water levels in a multilayered groundwater system under variable state, pumping and climate conditions. J. Hydrol. Eng. 8(6), 348–360 (2003)

    Article  Google Scholar 

  14. Coulibaly, P., Anctil, F., Aravena, R., Bobee, B.: Artificial neural network modeling of water table depth fluctuations. Water Resour. Res. 37(4), 885–896 (2001)

    Article  Google Scholar 

  15. Dadaser, F., Cengiz, E.: A neural network model for simulation of water levels at the Sultan Marshes wetland in Turkey. Wetl. Ecol. Manag. 21(5), 297–306 (2013)

    Article  Google Scholar 

  16. Daliakopoulos, I.N., Coulibaly, P., Tsanis, I.K.: Groundwater level forecasting using artificial neural networks. J. Hydrol. 309(1–4), 229–240 (2005)

    Article  Google Scholar 

  17. Davis, J.C.: Statistics and Data Analysis in Geology, 3rd edn. Wiley, New York (2002)

    Google Scholar 

  18. De Ridder, N.A.: Analysis of the pumping test De Vennebulten near Varsseveld (in Dutch). Institute for Land and Water Management Research, Wageningen, Report no. 335, 5 (1966)

  19. Fausett, L.: Fundamentals of Neural Networks. Prentice Hall, Englewood Cliffs (1994)

    Google Scholar 

  20. Gangopadhay, S., Gautam, T.R., Gupta, A.D.: Subsurface characterization using neural networks and GIS. J. Comput. Civ. Eng. 13(3), 153–161 (1999)

    Article  Google Scholar 

  21. Gass, S.I.: Decision-aiding models: Validation, assessment, and related issues for policy analysis. Oper. Res. 31(4), 603–631 (1983)

    Article  Google Scholar 

  22. Hamm, L., Brorsen, B.W., Hagan, M.: Comparison of stochastic global optimization methods to estimate neural network weights. Neural. Process. Lett. 26(3), 145–158 (2007)

    Article  Google Scholar 

  23. Hantush, M.S., Jacob, C.E.: Non-steady radial flow in an infinite leaky aquifer. Trans. Amer. Geophys. Union 36(1), 95–100 (1955)

    Article  Google Scholar 

  24. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  25. Hornik, K., Stinchcombe, M., White, H.: Multilayer feed forward networks are universal approximators. Neur. Netw. 2(5), 359–366 (1989)

    Article  Google Scholar 

  26. Karamouz, M., Razavi, S., Araghinejad, S.: Long-lead seasonal rainfall forecasting using time-delay recurrent neural networks: a case study. Hydrol. Process. 22(2), 229–241 (2008)

    Article  Google Scholar 

  27. Karlik, B., Olgac, A.V.: Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert Syst. 1(4), 111–122 (2011)

    Google Scholar 

  28. Lallahem, S., Mania, J., Hani, A., Najjar, Y.: On the use of neural networks to evaluate groundwater levels in fractured media. J. Hydrol. 307, 92–111 (2005)

    Article  Google Scholar 

  29. Lin, G.F., Chen, G.R.: Determination of aquifer parameters using radial basis function network approach. J. Chin. Inst. Eng. 28(2), 241–249 (2005)

    Article  Google Scholar 

  30. Lin, G.F., Chen, G.R.: An improved neural network approach to the determination of aquifer parameters. J. Hydrol. 316(1–4), 281–289 (2006)

    Article  Google Scholar 

  31. Lin, H.T., Ke, K.Y., Chen, C.H., Wu, S.C., Tan, Y.C.: Estimating anisotropic aquifer parameters by artificial neural networks. Hydrol. Process. 24, 3237–3250 (2010)

    Article  Google Scholar 

  32. Mahallawi, K.h., Mania, J., Hani, A., Shahrour, I.: Using of neural networks for the prediction of nitrate groundwater contamination in rural and agricultural areas. Environ. Earth Sci. 65, 917–928 (2012)

    Article  Google Scholar 

  33. Maier, H.R., Dandy, G.C.: Empirical comparison of various methods for training feed-forward neural networks for salinity forecasting. Water Resour. Res. 32(8), 2591–2596 (1999)

    Article  Google Scholar 

  34. Maier, H.R., Dandy, G.C.: Neural networks for the prediction and forecasting of water resources variables: a review of modeling issues and applications. Environ. Model. Softw. 15, 101–124 (2000)

    Article  Google Scholar 

  35. Maier, H.R., Jain, A., Dandy, G.C., Sudheer, K.P.: Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model. Softw. 25(8), 891–909 (2010)

    Article  Google Scholar 

  36. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 113–115 (1943)

    Article  Google Scholar 

  37. Mishra, A., Ray, C., Kolpin, D.: Use of qualitative and quantitative information in neural networks for assessing agricultural chemical contamination of domestic wells. J. Hydrol. Eng. 9(6), 502–511 (2004)

    Article  Google Scholar 

  38. Mohanty, S., Jha, M.K., Kumar, A., Sudheer, K.P.: Artificial neural network modeling for groundwater level forecasting in a river island of eastern india. Water Resour. Manag. 24(9), 1845–1865 (2010)

    Article  Google Scholar 

  39. Nayak, P.C., Satyaji Rao, Y.R., Sudheer, K.P.: Groundwater level forecasting in a shallow aquifer using artificial neural network. Water Resour. Manag. 20(1), 77–90 (2006)

    Article  Google Scholar 

  40. Neuman, S.P.: Analysis of pumping test data from anisotropic unconfined aquifers considering delayed gravity response. Water Resour. Res. 11(2), 329–342 (1975)

    Article  Google Scholar 

  41. Parkin, G., Birkinshaw, S.J., Younger, P.L., Rao, Z., Kirk, S.: A numerical modeling and neural network approach to estimate the impact of groundwater abstractions on river flows. J. Hydrol. 339, 15–28 (2007)

    Article  Google Scholar 

  42. Pezeshk, S., Camp, C.V., Karprapu, S.: Geophysical log interpretation using neural network. J. Comput. Civ. Eng. 10(2), 136–143 (1996)

    Article  Google Scholar 

  43. Prickett, T.A.: Type curve solution to aquifer tests under water table conditions. Ground Water 3, 3 (1965)

    Article  Google Scholar 

  44. Ranjithan, S., Eheart, J.W., Garrett, J.H.: Neural network-based screening for groundwater reclamation under uncertainty. Water Resour. Res. 29(3), 563–574 (1993)

    Article  Google Scholar 

  45. Ray, C., Klindworth, K.K.: Neural networks for agrichemical vulnerability assessment of rural private wells. J. Hydrol. Eng. 5(2), 162–171 (2000)

    Article  Google Scholar 

  46. Razavi, S., Tolson, B.A.: A new formulation for feed forward neural networks. Neural Netw. 22(10), 1588–1598 (2011)

    Article  Google Scholar 

  47. Rumelhart, D.E., Hinton, G.R., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D. E., David, E (eds.) Parallel Distributed Processing, pp 318–362. MIT Press, MA (1986)

  48. Sahoo, G.B., Ray, C., Mehnert, E., Keefer, D.A.: Applications of artificial neural networks to assess pesticide contamination in shallow groundwater. Sci. Total. Environ. 367, 234–251 (2006)

    Article  Google Scholar 

  49. Samani, N.: On the development and calibration of a parametric catchment sediment model. J. Eng.(IRI) 2 (3), 47–54 (1990)

    Google Scholar 

  50. Samani, N., Gohari-Moghadam, M., Safavi, A.A.: A simple neural network model for the determination of aquifer parameters. J. Hydrol. 340(1–2), 1–11 (2007)

    Article  Google Scholar 

  51. Singh, R.M., Datta, B.: Artificial neural network modeling for identification of unknown pollution sources in groundwater with partially missing concentration observation data. Water Resour. Manag. 21, 557–572 (2007)

    Article  Google Scholar 

  52. Taormina, R., Chau, K.W., Sethi, R.: Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intell. 25(8), 1670–1676 (2012)

    Article  Google Scholar 

  53. Tapoglou, E., Trichakis, I.C., Dokou, Z., Nikolos, I.K., Karatzas, G.P.: Groundwater-level forecasting under climate change scenarios using an artificial neural network trained with particle swarm optimization. Hydrol. Sci. J. 59(6), 1225–1239 (2014). https://doi.org/10.1080/02626667.2013.838005

    Article  Google Scholar 

  54. Theis, C.V.: The relationship between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. Trans. Amer. Geophys. Union 16, 519–524 (1935)

    Article  Google Scholar 

  55. Todd, D.K., Mays, L.W.: Groundwater Hydrology. Wiley, New York (2005)

    Google Scholar 

  56. Toth, E., Brath, A., Montanari, A.: Comparison of short-term rainfall prediction models for real-time flood forecasting. J. Hydrol. 239, 132–147 (2000)

    Article  Google Scholar 

  57. Wu, C.L., Chau, K.W., Li, Y.S.: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res. 45, W08432 (2009)

    Article  Google Scholar 

  58. Wu, W., Dandy, G.C., Maier, H.R.: Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modeling. Environ. Model. Softw. 54, 108–127 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Constructive comments and suggestions provided by the associate Editor Prof. Ibrahim Hoteit and two anonymous reviewers are greatly appreciated.

Funding

This research was supported by the Office of Research Vice Chancellor of Shiraz University, Iran, grant number 11/480.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nozar Samani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azari, T., Samani, N. Modeling the Neuman’s well function by an artificial neural network for the determination of unconfined aquifer parameters. Comput Geosci 22, 1135–1148 (2018). https://doi.org/10.1007/s10596-018-9742-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-018-9742-8

Keywords

Navigation