Skip to main content
Log in

Pulsating linear in situ combustion: why do we often observe oscillatory behavior?

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We have studied simplified, pulsating, one-dimensional, in situ combustion processes. For two cases, with different reaction stoichiometry, oscillations in temperature, flue gas rate, and flue gas composition are demonstrated and the parameter space resulting in oscillatory behavior is identified. To understand the role of different parameters, linear stability of the problem is studied. Because linear stability analysis requires the solution of uniform front propagation, we investigated an asymptotic analytical solution of the problem. We found an original formula for the front propagation velocity. The analytical solution enabled us to define four dimensionless parameters including Zeldovich (Ze) number, Damkohler (Da) number, a specialized air-fuel ratio (B), and a ratio incorporating air and rock heat capacities (Δ1). Using linear stability analysis, we show that the stability of the problem is also governed by these four parameters. Because Δ1 ≈ 1 for typical laboratory conditions, the set of (Ze, Da, B) is used to construct the stability plane; consequently, several important design considerations are suggested. Both larger air injection rate and air enriched in oxygen increase the front propagation speed but push the system toward oscillatory behavior. Conversely, the introduction of catalysts and metal additives, that decrease the activation energy of reactions, increases the front speed and stability. Similarly, increasing the amount of fuel available for the combustion makes the design more stable and drives the combustion front to propagate more quickly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akkutlu, I.Y., Yortsos, Y.C.: The dynamics of in-situ combustion fronts in porous media. Combust. Flame 134(3), 229–247 (2003)

    Article  Google Scholar 

  2. Akkutlu, I.Y., Yortsos, Y.C.: The dynamics of in-situ combustion fronts in porous media. Combust. Flame 134(3), 229–247 (2003)

    Article  Google Scholar 

  3. Akkutlu, I.Y., Yortsos, Y.C., et al.: The dynamics of combustion fronts in porous media. In: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers (2000)

  4. Aldushin, A.: New results in the theory of filtration combustion. Combust. Flame 94(3), 308–320 (1993)

    Article  Google Scholar 

  5. Aldushin, A.: Filtration combustion. Advances in combustion science: In honor of Ya B Zel’dovich(A 97-24531 05-25), Reston, VA, American Institute of Aeronautics and Astronautics. Inc(Progress Astronaut. Aeronaut. 173, 95–115 (1997)

    Google Scholar 

  6. Aldushin, A., Kasparyan, S.: Thermodiffusional instability of a combustion front. In: Soviet Physics Doklady. vol. 24, p. 29 (1979)

  7. Aldushin, A., Kasparyan, S.: Stability of stationary filtrational combustion waves. Combust. Explosion, Shock Waves 17(6), 615–625 (1981)

    Article  Google Scholar 

  8. Aldushin, A., Martem’yanova, T., Merzhanov, A., Khaikin, B., Shkadinskii, K.: Autovibrational propagation of the combustion front in heterogeneous condensed media. Combust. Explosion, Shock Waves 9(5), 531–542 (1973)

    Article  Google Scholar 

  9. Amanam, U.U., Kovscek, A.R.: Analysis of the effects of copper nanoparticles on in-situ combustion of extra heavy-crude oil. J. Pet. Sci. Eng. 152, 406–415 (2017)

    Article  Google Scholar 

  10. Bazargan, M., Kovscek, A.R.: A reaction model-free approach for in situ combustion calculations: 1-kinetics prediction. Transp. Porous Media 107(2), 507–525 (2015)

    Article  Google Scholar 

  11. Bazargan, M., Chen, B., Cinar, M., Glatz, G., Lapene, A., Zhu, Z., Castanier, L., Gerritsen, M., Kovscek, A., et al.: A combined experimental and simulation workflow to improve predictability of in situ combustion. In: SPE Western North American Region Meeting, Society of Petroleum Engineers (2011)

  12. Bazargan, M., Lapene, A., Chen, B., Castanier, L.M., Kovscek, A.R.: An induction reactor for studying crude-oil oxidation relevant to in situ combustion. Rev. Sci. Instrum. 84(7), 075,115 (2013). https://doi.org/10.1063/1.4815827

    Article  Google Scholar 

  13. Bousaid, I., Ramey, H. Jr, et al.: Oxidation of crude oil in porous media. Soc. Pet. Eng. J. 8(02), 137–148 (1968)

    Article  Google Scholar 

  14. Buckmaster, J., Clavin, P., Linan, A., Matalon, M., Peters, N., Sivashinsky, G., Williams, F.: Combustion theory and modeling. Proc. Combust. Inst. 30(1), 1–19 (2005)

    Article  Google Scholar 

  15. Burger, B.C., Sahuquet, J.G.: Chemical Aspects of In-situ Combustion-Heat of Combustion and Kinetics. SPE Journal (1972)

  16. Cinar, M., Castanier, L.M., Kovscek, A.R.: Isoconversional kinetic analysis of the combustion of heavy hydrocarbons. Energy Fuels 23(8), 4003–4015 (2009). https://doi.org/10.1021/ef900222w

    Article  Google Scholar 

  17. Dobrego, K., Zhdanok, S., Zaruba, A.: Experimental and analytical investigation of the gas filtration combustion inclination instability. Int. J. Heat Mass Transf. 44(11), 2127–2136 (2001)

    Article  Google Scholar 

  18. Firsov, A., Shkadinskii, K.: Combustion of gasless compositions in the presence of heat losses. Combust. Explosion Shock Waves 23(3), 288–294 (1987)

    Article  Google Scholar 

  19. Ghazaryan, A., Latushkin, Y., Schecter, S., de Souza, A.J.: Stability of gasless combustion fronts in one-dimensional solids. Arch. Ration. Mech. Anal. 198(3), 981–1030 (2010)

    Article  Google Scholar 

  20. Glazyrin, S., Sasorov, P.: Simple model of propagating flame pulsations. Mon. Not. Royal Astron. Soc. 416(3), 2090–2095 (2011)

    Article  Google Scholar 

  21. Gutierrez, D., Skoreyko, F., Moore, R., Mehta, S., Ursenbach, M., et al.: The challenge of predicting field performance of air injection projects based on laboratory and numerical modelling. J. Can. Pet. Technol. 48 (04), 23–33 (2009)

    Article  Google Scholar 

  22. Hasċakir, B, Glatz, G., Castanier, L.M., Kovscek, A., et al.: In-situ combustion dynamics visualized with x-ray computed tomography. SPE J. 16(03), 524–536 (2011)

    Article  Google Scholar 

  23. Hascakir, B., Ross, C., Castanier, L.M., Kovscek, A., et al.: Fuel formation and conversion during in-situ combustion of crude oil. SPE J. 18(06), 1–217 (2013)

    Article  Google Scholar 

  24. He, B., Chen, Q., Castanier, L.M., Kovscek, A.R.: Improved in-situ combustion performance with metallic salt additives. In: SPE western regional meeting, Society of Petroleum Engineers (2005)

  25. Ivleva, T., Merzhanov, A.: Mathematical 3d-modeling for spinning gasless combustion waves. In: Key Engineering Materials, Trans Tech Publ. vol. 217, pp. 13–20 (2002)

  26. Khaikin, B., Merzhanov, A.: Theory of thermal propagation of a chemical reaction front. Combust. Explosion Shock Waves 2(3), 22–27 (1966)

    Article  Google Scholar 

  27. Kostin, S., Krishenik, P., Shkadinskii, K.: Experimental study of the heterogeneous filtration combustion mode. Combust. Explosion Shock Waves 50(1), 42–50 (2014)

    Article  Google Scholar 

  28. Kovscek, A., Castanier, L.M., Gerritsen, M., et al.: Improved predictability of in-situ-combustion enhanced oil recovery. SPE Reserv. Eval. Eng. 16(02), 172–182 (2013)

    Article  Google Scholar 

  29. Kumar, M., et al.: Simulation of laboratory in-situ combustion data and effect of process variations. In: SPE symposium on reservoir simulation, Society of Petroleum Engineers (1987)

  30. Lebedev, A., Sukhov, G., Yarin, L.: Stability of filtration combustion. Combust. Explosion Shock Waves 12(6), 775–779 (1976)

    Article  Google Scholar 

  31. Lewis, B., Von Elbe, G.: Theory of flame propagation. Chem. Rev. 21(2), 347–358 (1937)

    Article  Google Scholar 

  32. Lin, C.Y., Chen, W.H., Lee, S.T., Culham, W.E.: Numerical Simulation of Combustion Tube Experiments and the Associated Kinetics of In-Situ Combustion Processes. SPE Journal (1984)

  33. Mailybaev, A., Bruining, J., Marchesin, D.: Analysis of in situ combustion of oil with pyrolysis and vaporization. Combust. Flame 158(6), 1097–1108 (2011)

    Article  Google Scholar 

  34. Mailybaev, A.A., Bruining, J., Marchesin, D., et al.: Analytical formulas for in-situ combustion. SPE J. 16(03), 513–523 (2011)

    Article  Google Scholar 

  35. Makhviladze, G., Novozhilov, B.: Two-dimensional stability of the combustion of condensed systems. J. Appl. Mech. Techn. Phys. 12(5), 676–682 (1971)

    Article  Google Scholar 

  36. Maksimov, E., Merzhanov, A.: Theory of combustion of condensed substances. Combust. Explosion Shock Waves 2(1), 25–31 (1966)

    Article  Google Scholar 

  37. Matkowsky, B., Sivashinsky, G.: Propagation of a pulsating reaction front in solid fuel combustion. SIAM J. Appl. Math. 35(3), 465–478 (1978)

    Article  Google Scholar 

  38. Moin, P.: Fundamentals of engineering numerical analysis. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  39. Moore, R., Ursenbach, M., Laureshen, C., Mehta, S.: Observation and design considerations for in-situ combustion. Petroleum Society of Canada, Canada (1997)

    Google Scholar 

  40. Moore, R.G., Bennion, D.W., Belgrave, J.D.M., Gie, D.N., Ursenbach, M.G.: New insights into enriched-air in-situ combustion. J. Pet. Technol. 42(07), 916–923 (1990)

    Article  Google Scholar 

  41. Panait-Patica, A., Serban, D., Ilie, N., Pavel, L., Barsan, N., et al.: Suplacu de barcau field-a case history of a successful in-situ combustion exploitation. In: SPE Europec/EAGE Annual Conference and Exhibition, Society of Petroleum Engineers (2006)

  42. Penberthy, W.L., Ramey, H.J.: Design and operation of laboratory combustion tubes. Soc. Pet. Eng. J. 6 (02), 183–198 (1966)

    Article  Google Scholar 

  43. Prats, M.: Thermal Recovery. Society of Petroleum Engineers Monograph, p. 7 (1982)

  44. Sarathi, P.S.: In-situ combustion handbook—principles and practices, p 73005. Technical report, National Petroleum Technology Office U.S. Department of Energy, BDM Petroleum Technologies P.O. Box 2565, Bartlesville (1999)

    Book  Google Scholar 

  45. Schult, D., Matkowsky, B., Volpert, V., Fernandez-Pello, A.: Forced forward smolder combustion. Combust. Flame 104(1), 1–26 (1996)

    Article  Google Scholar 

  46. Schult, D.A.: Matched asymptotic expansions and the closure problem for combustion waves. SIAM J. Appl. Math. 60(1), 136–155 (1999)

    Article  Google Scholar 

  47. Shkadinskii, K., Khaikin, B., Merzhanov, A.: Propagation of a pulsating exothermic reaction front in the condensed phase. Combust. Explosion Shock Waves 7(1), 15–22 (1971)

    Article  Google Scholar 

  48. STARS: CMG, COMPUTER MODELLING GROUP LTD. 450 Gears Road, Suite 600 Houston, p. 77067, http://www.cmgl.ca/software/stars2014 (2015)

  49. Thomas, F., Moore, R., Bennion, D., et al.: Kinetic parameters for the high-temperature oxidation of in-situ combustion coke. Journal of Canadian Petroleum Technology 24(06). https://doi.org/10.2118/85-06-05 (1985)

  50. Wahle, C., Matkowsky, B., Aldushin, A.: Effects of gas-solid nonequilibrium in filtration combustion. Combust. Sci. Technol. 175(8), 1389–1499 (2003)

    Article  Google Scholar 

  51. Yarin, L.P., Hetsroni, G., Mosyak, A.: Combustion of two-phase reactive media. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  52. Zeldovich, I., Barenblatt, G.I., Librovich, V., Makhviladze, G.: Mathematical theory of combustion and explosions (1985)

  53. Zeldovich, Y.B.: Selected Works of Yakov Borisovich Zeldovich, Volume I: Chemical Physics and Hydrodynanics, vol. 1. Princeton University Press, Princeton (2014)

    Google Scholar 

  54. Zhu, Z., Bazargan, M., Lapene, A., Gerritsen, M., Castanier, L., Kovscek, A.: Upscaling for field-scale in-situ combustion simulation. In: Society of Petroleum Engineers, (2011), https://doi.org/10.2118/144554-MS

Download references

Acknowledgements

The authors acknowledge Ecopetrol for their help in funding this project. We thank Dr. Franck Monmont for introducing us to the topic of oscillatory ISC. We also thank the members of the SUPRI-A (Stanford University Petroleum Research Institute) Industrial Affiliates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bazargan.

Appendix

Appendix

1.1 7.1 Front Velocity Calculation

We define the non dimensional parameter

$${\Psi} =\frac{{\int}_{T_{x}}^{T_{F}}{y\ C\ dT}} {(T_{F}-T_{x}){(y\ C)}_{x}} \\ $$

By plotting Ψ vs. T (Fig. 14), we observe empirically that at T = TR, Ψ ≈ 1.

Fig. 14
figure 14

Ψ vs. T used for front velocity analysis

So we have the following

$${\int}_{T_{R}}^{T_{F}}{y\ C} dT = y_{0} C_{0} (T_{F}-T_{R}) $$

From Eq. 8 (with \(\frac {\partial }{\partial \theta }= 0\)), we have

$$\frac{\partial C}{\partial T} \frac{\partial T}{\partial \xi} V =R_{0}\ y\ C\ {\Theta}(T-T_{R})\\ $$

By assuming that \(\frac {\partial T}{\partial \xi } \) is constant between TR and TF and integration we write:

$$-C_{0}\frac{\partial T}{\partial \xi} V = R_{0} y_{0} C_{0} (T_{F}-T_{R})\\ $$

Additionally, from Eq. 13 and knowing that at ξ = 0, C = C0,and T = TR, we have:

$$\frac {\partial T}{\partial \xi} =\ \frac{-(T_{R}-T_{i})\ V c_{s} {\Delta}_{2}}{\lambda}\\ $$

Hence, we reach (22).

1.2 7.2 Non-dimensional Form of the Energy Balance Equation

Starting from the energy balance equation

$$\lambda\ A \frac{\partial^{2} T}{\partial \xi^{2}} +Q\ \dot{R}\ A=\dot{m} c_{p} -A\ V c_{s} \frac{\partial T}{\partial \xi} +A\ c_{s} \frac{\partial T}{\partial \theta} \\ $$

and using Eq. ?? and dimensionless temperature, we have:

$$\begin{array}{@{}rcl@{}} &&\frac{\lambda\ A (T_{f}-T_{i})}{L^{2}}\frac{\partial^{2} \overset{\frown}{T}} {\partial \overset{\frown}{\xi}^{2}} +\\ &&(T_{F}-T_{i}) \frac {(A\ Vc_{s} - {\dot m_{inj}} )}{V\ C_{0}} \ddot R \frac{\overset{\frown}{Y}\overset{\frown}{C}} {\overset{\frown}{m}}\ e^{Ze(1-\frac{1}{\overset{\frown}{T}} )}\\ &&= (\frac{\dot{m}_{inj}\ c_{p}\ (T_{F}-T_{i})} {L} )\overset{\frown}{m} \frac{\partial \overset{\frown}{T}} {\partial \overset{\frown}{\xi} } - (\frac{A\ Vc_{s}(T_{F}-T_{i})}{L} )\frac{\partial \overset{\frown}{T}} {\partial \overset{\frown}{\xi} } \\ &&+ (\frac{A\ c_{s}(T_{F}-T_{i})}{L} )\frac{\partial \overset{\frown}{T}} {\partial \overset{\frown}{\theta} } \end{array} $$

Dividing both sides by TFTi and introducing Δ1 we have:

$$\begin{array}{@{}rcl@{}} &&\frac{\lambda\ A}{L^{2}}\frac{\partial^{2} \overset{\frown}{T}} {\partial \overset{\frown}{\xi}^{2}} + {\Delta}_{1}\frac {Ac_{s}}{C_{0}} \ddot R \frac{\overset{\frown}{Y}\overset{\frown}{C}} {\overset{\frown}{m}}\ e^{Ze(1-\frac{1}{\overset{\frown}{T}} )}\\ &&= -{\Delta}_{1} (\frac{A\ V\ c_{s}}{L} )\overset{\frown}{m} \frac{\partial \overset{\frown}{T}} {\partial \overset{\frown}{\xi} } + (\frac{A\ Vc_{s}}{L} )(\overset{\frown}{m}-1)\frac{\partial \overset{\frown}{T}} {\partial \overset{\frown}{\xi} } \\ &&+ (\frac{A\ c_{s}}{\theta} )\frac{\partial \overset{\frown}{T}} {\partial \overset{\frown}{\theta} } \end{array} $$

in which we have added and subtracted the \(\overset {\frown }{m} (\frac {A\ Vc_{s}}{L} )\frac {\partial \overset {\frown }{T}} {\partial \overset {\frown }{\xi } } \) term. By using Eq. 22, \(\frac {\lambda \ A}{L^{2}}\) in the first term of the LHS, is written as:

$$\frac{\lambda\ A}{L^{2}}=\frac{\lambda\ A\ \ddot{R}^{2}}{V^{2} {C_{0}}^{2}}=\frac{A\ c_{s} \ddot{R}}{C_{0}} (\frac{T_{F}}{T_{R}} ) Ze {\Delta}_{2} \approx \frac{A\ c_{s} \ddot{R}}{C_{0}} Ze {\Delta}_{2} $$

By inserting L and 𝜃 in the RHS of the equation, we see that all the terms contain \(\frac {A\ c_{s} \ddot {R}}{C_{0}}\). By dividing the equation by \(\frac {A\ c_{s} \ddot {R}}{C_{0}}\) and rearranging we reach Eq. 29.

1.3 7.3 Convergence and Stability

We show the convergence of our simulation by temporal and spatial refinement of the simulation. We also show the stability of our numerical simulation to both infinitesimal and finite perturbations.

In general, for σ < 1, we found that the fully resolved system is achieved by having Δx = 0.3 mm and Δt = 0.01 min. Figures 15 and 16 show the flue gas rates and oxygen composition for the case of Δx = 0.3 mm and Δx = 0.15 mm. We see that convergence is achieved.

Fig. 15
figure 15

Flue gases rate for case 1 with Δx = 0.3 mm and Δx = 0.15 mm and Δt = 0.01 min. Note convergence as Δx decreases

Fig. 16
figure 16

Oxygen composition in flue gases for case 1 with Δx = 0.3 mm and Δx = 0.15 mm and Δt = 0.01 min. Note convergence as Δx decreases

For σ > 1, we found that the convergence is slower both in temporal and spatial domain. Figure 17 shows the flue gas rate for a time step size of 0.01 min having Δx = 0.3, 0.15,and 0.075 mm. Figure 18 shows the flue gas rates for Δx = 0.3 mm having time step sizes of 0.001, 0.0005, and 0.0001 min.

Fig. 17
figure 17

Flue gases rate for case 2 with Δx = 0.3 mm, Δx = 0.15, and Δx = 0.075 mm and Δt = 0.01 min. Note convergence as Δx decreases

Fig. 18
figure 18

Flue gases rate of case 2 for Δx = 0.3 mm with time step sizes of 0.001, 0.0005, and 0.0001 min. Note convergence as Δx decreases

We also have tested the stability of our numerical simulation against infinitesimal and finite perturbations. The results show that that an infinitesimal change in the parameters does not cause deviation from the original results. Also a finite change in the parameters, causes the results to be in finite difference with the original results. Figure 19 shows the stability of the original numerical simulation (with with Ea= 120000 J/mol) toward toward infinitesimal change (Ea= 120000.001 J/mol) and finite change (Ea= 120100 J/mole). As we can see from Fig. 19, the infinitesimal change of activation energy does not change the final result. Also, a finite change in activation energy makes the result to be in finite difference with the original solution.

Fig. 19
figure 19

Stability of numerical simulation (with Ea= 120000 J/mol) toward infinitesimal change (Ea= 120000.001 J/mol) and finite change Ea= 120100 J/mol

1.4 7.4 Results

It is interesting to see how the oscillation develops with time for different scenarios. Here, we show the results of flue gas compositions, temperature profile, and flue gases rate for cases 1.2, 1.3, 1.4, 1.5, 2.2, 2.3, 2.4, and 2.5 in Figs. 2021222324252627282930313233, and 34.

Fig. 20
figure 20

Flue gases composition profiles for case 1.2

Fig. 21
figure 21

Flue gases composition profiles for case 1.3

Fig. 22
figure 22

Flue gases composition profiles for case 1.4

Fig. 23
figure 23

Flue gases composition profiles for case 1.5

Fig. 24
figure 24

Temperature profiles at different times for case 1.2

Fig. 25
figure 25

Temperature profiles at different times for case 1.3

Fig. 26
figure 26

Temperature profiles at different times for case 1.4

Fig. 27
figure 27

Temperature profiles at different times for case 1.5

Fig. 28
figure 28

Flue gases composition profiles for case 2.2

Fig. 29
figure 29

Flue gases composition profiles for case 2.3

Fig. 30
figure 30

Flue gases composition profiles for case 2.4

Fig. 31
figure 31

Flue gases composition profiles for case 2.5

Fig. 32
figure 32

Temperature profiles at different times for case 2.2

Fig. 33
figure 33

Temperature profiles at different times for case 2.3

Fig. 34
figure 34

Temperature profiles at different times for case 2.4

Fig. 35
figure 35

Temperature profiles at different times for case 2.5

Fig. 36
figure 36

Flue gases rate for case 1.1

Fig. 37
figure 37

Flue gases rate for case 1.2

Fig. 38
figure 38

Flue gases rate for case 1.3

Fig. 39
figure 39

Flue gases rate for case 1.4

Fig. 40
figure 40

Flue gases rate for case 1.5

Fig. 41
figure 41

Flue gases rate for case 2.1

Fig. 42
figure 42

Flue gases rate for case 2.2

Fig. 43
figure 43

Flue gases rate for case 2.3

Fig. 44
figure 44

Flue gases rate for case 2.4

Fig. 45
figure 45

Flue gases rate for case 2.5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazargan, M., Kovscek, A.R. Pulsating linear in situ combustion: why do we often observe oscillatory behavior?. Comput Geosci 22, 1115–1134 (2018). https://doi.org/10.1007/s10596-018-9741-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-018-9741-9

Keywords

Navigation