Skip to main content
Log in

Unified thermo-compositional-mechanical framework for reservoir simulation

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a reservoir simulation framework for coupled thermal-compositional-mechanics processes. We use finite-volume methods to discretize the mass and energy conservation equations and finite-element methods for the mechanics problem. We use the first-order backward Euler for time. We solve the resulting set of nonlinear algebraic equations using fully implicit (FI) and sequential-implicit (SI) solution schemes. The FI approach is attractive for general-purpose simulation due to its unconditional stability. However, the FI method requires the development of a complex thermo-compositional-mechanics framework for the nonlinear problems of interest, and that includes the construction of the full Jacobian matrix for the coupled multi-physics discrete system of equations. On the other hand, SI-based solution schemes allow for relatively fast development because different simulation modules can be coupled more easily. The challenge with SI schemes is that the nonlinear convergence rate depends strongly on the coupling strength across the physical mechanisms and on the details of the sequential updating strategy across the different physics modules. The flexible automatic differentiation-based framework described here allows for detailed assessment of the robustness and computational efficiency of different coupling schemes for a wide range of multi-physics subsurface problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The tolerance values 𝜖f, 𝜖m are used to ensure the convergence of each set of equations separately. The L2 and L norms are used to control the tolerance values of “mechanics” and “flow/energy” equations, respectively.

References

  1. Aboustit, B., Advani, S., Lee, J.: Variational principles and finite element simulations for thermo-elastic consolidation. Int. J. Numer. Anal. Methods Geomech. 9, 49–69 (1985). https://doi.org/10.1002/nag.1610090105

    Article  Google Scholar 

  2. AD-GPRS: Automatic differentiation general purpose research simulator. https://supri-b.stanford.edu/research-areas/ad-gprs (2017)

  3. Armero, F., Simo, J.: A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int. J. Numer. Methods Eng. 35, 737–766 (1992). https://doi.org/10.1002/nme.1620350408

    Article  Google Scholar 

  4. Aziz, K., Settari, A: Petroleum reservoir simulation. Applied Science Publishers (1979)

  5. Bevillon, D., Masson, R: Stability and convergence analysis of partially coupled schemes for geomechanical reservoir simulations. In: The European Conference on the Mathematics of Oil Recovery. Baveno, Italy (2000)

  6. Borja, I.: Plasticity: modeling and computation. Springer, Berlin (2013)

    Book  Google Scholar 

  7. Butler, R.: New approach to the modelling of steam-assisted gravity drainage. J. Can. Pet. Technol. 24, 42–51 (1985). https://doi.org/10.2118/85-03-01

    Article  Google Scholar 

  8. Cao, H., Tchelepi, H.A., Wallis, J.R., Yardumian, H.E.: Parallel scalable unstructured CPR-type linear solver for reservoir simulation. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2005)

  9. Castelletto, N., White, J.A., Tchelepi, H.A.: Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics. Int. J. Numer. Anal. Methods Geomech. 39, 1593–1618 (2015). https://doi.org/10.1002/nag.2400

    Article  Google Scholar 

  10. Christie, M., Blunt, M.: Tenth SPE comparative solution project: a comparison of upscaling techniques. In: SPE Reservoir Simulation Symposium. Society of Petroleum Engineers (2001)

  11. Coats, K.H.: An equation of state compositional model. Society of Petroleum Engineers (1980). https://doi.org/10.2118/8284-PA

  12. Coussy, O.: Poromechanics. Wiley, New York (2004)

    Google Scholar 

  13. Crisfield, M.: Non-linear finite element analysis of solids and structures. Wiley, New York (1996)

    Google Scholar 

  14. David, C., Wong, T.-F., Zhu, W., Zhang, J.: Laboratory measurement of compaction-induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust. Pure Appl. Geophys. 143, 425–456 (1994). https://doi.org/10.1007/BF00874337

    Article  Google Scholar 

  15. Dean, R., Gai, X., Stone, C., Minkoff, S.: A comparison of techniques for coupling porous flow and geomechanics. Soc. Petrol. Eng. 11, 132–140 (2006). https://doi.org/10.2118/79709-PA

    Google Scholar 

  16. Drucker, D., Prager, W.: Soil mechanics and plastic analysis or limit design. Q. Appl. Math. 10, 157–165 (1952)

    Article  Google Scholar 

  17. Ehlers, W., Ellsiepen, P.: Pandas: Ein fe-system zur simulation von sonderproblemen der bodenmechanik. Finite Elemente in der Baupraxis: Modellierung, Berechnung und Konstruktion. Beiträge zur Tagung FEM 98, 431–400 (1998)

    Google Scholar 

  18. Fedorenko, R.: A relaxation method for solving elliptic difference equations. USSR Comput. Math. Math. Phys. 1, 1092–1096 (1962)

    Article  Google Scholar 

  19. Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M., Helmig, R.: DuMux: DUNE for multi-{phase,component,scale,physics,...} flow and transport in porous media. Adv. Water Resour. 34, 1102–1112 (2011). https://doi.org/10.1016/j.advwatres.2011.03.007

    Article  Google Scholar 

  20. Gai, X.: A coupled geomechanics and reservoir flow model on parallel computers. Ph.D. thesis University of Texas at Austin (2004)

  21. Garipov, T.T., Voskov, D., Tchelepi, H.A.: Rigorous coupling of geomechanics and thermal-compositional flow for SAGD and ES-SAGD operations. In: SPE Canada Heavy Oil Technical Conference. Calgary, Canada (2015). https://doi.org/10.2118/174508-MS

  22. Garipov, T.T., White, J., Lapene, A., Tchelepi, H.A.: Thermo-hydro-mechanical model for source rock thermal maturation. In: 50th US Rock Mechanics Geomechanics Symposium 2016. Houston, USA (2016)

  23. Hu, L., Winterfeld, P.H., Fakcharoenphol, P., Wu, Y.-S.: A novel fully-coupled flow and geomechanics model in enhanced geothermal reservoirs. J. Pet. Sci. Eng. 107, 1–11 (2013). https://doi.org/10.1016/j.petrol.2013.04.005

    Article  Google Scholar 

  24. Huang, J., Griffiths, D.: Return mapping algorithms and stress predictors for failure analysis in geomechanics. J. Eng. Mech. 135, 276–284 (2009). https://doi.org/10.1061/(ASCE)0733-9399(2009)135:4(276)

    Article  Google Scholar 

  25. Hughes, T.: The finite element method: linear static and dynamic finite element analysis. Courier Dover Publications (2012)

  26. Jha, B., Juanes, R.: A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics. Acta Geotech. 2, 139–153 (2007). https://doi.org/10.1007/s11440-007-0033-0

    Article  Google Scholar 

  27. Keilegavlen, E., Nordbotten, J.M.: Finite volume methods for elasticity with weak symmetry. International Journal for Numerical Methods in Engineering (2017)

  28. Kim, J.: Sequential methods for coupled geomechanics and multiphase flow. Ph.D. thesis Stanford University (2010)

  29. Kim, J.: Unconditionally stable sequential schemes for thermoporomechanics: undrained-adiabatic and extended fixed-stress splits. In: SPE Reservoir Simulation Symposium. Houston, USA (2015). https://doi.org/10.2118/173294-MS

  30. Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Eng. 200, 1591–1606 (2011). https://doi.org/10.1016/j.cma.2010.12.022

    Article  Google Scholar 

  31. Kim, J., Tchelepi, H.A., Juanes, R.: Rigorous coupling of geomechanics and multiphase flow with strong capillarity. SPE J 18, 1–123 (2013)

    Article  Google Scholar 

  32. Klevtsov, S., Castelletto, N., White, J., Tchelepi, H.: Block-preconditioned Krylov methods for coupled multiphase reservoir flow and geomechanics. In: ECMOR XIV-15th European Conference on the Mathematics of Oil Recovery (2016)

  33. Kolditz, O., Bauer, S., Bilke, L., Bottcher, N., Delfs, J., Fischer, T., Gorke, U., Kalbacher, T., Kosakowski, G., Mcdermott, C., Park, C., Radu, F., Rink, K., Shao, H., Shao, H., Sun, F., Sun, Y., Singh, A., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B.: Opengeosys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/ chemical (THM/C) processes in porous media. Environ. Earth Sci. 67, 589–599 (2012). https://doi.org/10.1007/s12665-012-1546-x

    Article  Google Scholar 

  34. Lewis, R.W., Schrefler, B.A.: The finite element method in the static and dynamic deformation and consolidation of porous media. Wiley, New York (1998)

    Google Scholar 

  35. Li, P., Chalaturnyk, R.: Gas-over-bitumen geometry and its SAGD performance analysis with coupled reservoir geomechanical simulation. J. Can. Pet. Technol. 46, 42–49 (2007). https://doi.org/10.2118/07-01-05

    Google Scholar 

  36. Li, P., Chalaturnyk, R., et al.: History match of the UTF phase A project with coupled reservoir geomechanical simulation. In: Canadian International Petroleum Conference. Petroleum Society of Canada (2005)

  37. Lie, K.-A.: An introduction to reservoir simulation using MATLAB: user guide for the Matlab Reservoir Simulation Toolbox (MRST). SINTEF ICT (2014)

  38. Mainguy, M., Longuemare, P.: Coupling fluid flow and rock mechanics: formulations of the partial coupling between reservoir and geomechanical simulators. Oil Gas Sci. Technol. 57, 355–367 (2002)

    Article  Google Scholar 

  39. Mandel, J.: Consolidation des sols (etude mathématique)́. Geotechnique 3, 287–299 (1953)

    Article  Google Scholar 

  40. Markert, B., Heider, Y., Ehlers, W.: Comparison of monolithic and splitting solution schemes for dynamic porous media problems. Int. J. Numer. Methods Eng. 82, 1341–1383 (2010). https://doi.org/10.1002/nme.2789

    Google Scholar 

  41. Mikelic, A., Wheeler, M.: Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17, 455–461 (2013). https://doi.org/10.1007/s10596-012-9318-y

    Article  Google Scholar 

  42. Minkoff, S., Stone, C., Bryant, S., Peszynska, M., Wheeler, M.: Coupled fluid flow and geomechanical deformation modeling. J. Pet. Sci. Eng. 38, 37–56 (2003a). https://doi.org/10.1016/S0920-4105(03)00021-4

    Article  Google Scholar 

  43. Minkoff, S.E., Stone, C., Bryant, S., Peszynska, M., Wheeler, M.F.: Coupled fluid flow and geomechanical deformation modeling. J. Pet. Sci. Eng. 38, 37–56 (2003b). https://doi.org/10.1016/S0920-4105(03)00021-4

    Article  Google Scholar 

  44. Nikolaevskij, V.N.: Mechanics of porous and fractured media volume 8. World Scientific (1990)

  45. Noorishad, J., Tsang, C.F., Witherspoon, P.A.: Coupled thermal-hydraulic-mechanical phenomena in saturated fractured porous rocks: numerical approach. J. Geophys. Res. Solid Earth 89, 10365–10373 (1984). https://doi.org/10.1029/JB089iB12p10365

    Article  Google Scholar 

  46. Ottosen, N., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier, Amsterdam (2005)

    Google Scholar 

  47. Park, K.: Stabilization of partitioned solution procedure for pore fluid-soil interaction analysis. Int. J. Numer. Methods Eng. 19, 1669–1673 (1983). https://doi.org/10.1002/nme.1620191106

    Article  Google Scholar 

  48. Peneloux, A., Rauzy, E., Freze, R.: A consistent correction for Redlich-Kwong-Soave volumes. Fluid Phase Equilib. 8, 7–23 (1982). https://doi.org/10.1016/0378-3812(82)80002-2

    Article  Google Scholar 

  49. Prevost, J.H.: Partitioned solution procedure for simultaneous integration of coupled-field problems. Commun. Numer. Methods Eng. 13, 239–247 (1997). https://doi.org/10.1002/(SICI)1099-0887(199704)13:43.0.CO;2-2

    Article  Google Scholar 

  50. Rahmati, E., Nouri, A., Fattahpour, V., et al.: Caprock integrity analysis during a sagd operation using an anisotropic elasto-plastic model. In: SPE Heavy Oil Conference-Canada. Society of Petroleum Engineers (2014)

  51. Rin, R.: Implicit Coupling Framework for Multi-Physics Reservoir Simulation. Ph.D. thesis Stanford University (2017)

  52. Rin, R., Tomin, P., Garipov, T., Voskov, D., Tchelepi, H.: General implicit coupling framework for multi-physics problems. In: SPE-182714-MS, SPE Reservoir Simulation Conference. Montgomery, USA (2017)

  53. Rutqvist, J.: Status of the tough-flac simulator and recent applications related to coupled fluid flow and crustal deformations. Comput. Geosci. 37, 739–750 (2011). https://doi.org/10.1016/j.cageo.2010.08.006.2009 Transport of Unsaturated Groundwater and Heat Symposium

    Article  Google Scholar 

  54. Samier, P., Onaisi, A., de Gennaro, S.: A practical iterative scheme for coupling geomechanics with reservoir simulation. SPE Reserv. Eval. Eng. 11, 892–901 (2008). https://doi.org/10.2118/107077-PA

    Article  Google Scholar 

  55. Settari, A., Walters, D.: Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction. Soc. Petrol. Eng. 6, 14–17 (2001). https://doi.org/10.2118/74142-PA

    Google Scholar 

  56. Simo, J.C., Hughes, T.J.: Computational Inelasticity volume 7. Springer Science Business Media (2006)

  57. Stüben, K.: Algebraic multigrid (AMG): experiences and comparisons. Appl. Math. Comput. 13, 419–451 (1983). https://doi.org/10.1016/0096-3003(83)90023-1

    Google Scholar 

  58. Thomas, L., Chin, L., Pierson, R., Sylte, J.: Coupled geomechanics and reservoir simulation. Soc. Petrol. Eng. 8, 350–358 (2003). https://doi.org/10.2118/87339-PA

    Google Scholar 

  59. Tran, D., Settari, A., Nghiem, L.: New iterative coupling between a reservoir simulator and a geomechanics module. Soc. Petrol. Eng. 9, 362–369 (2004). https://doi.org/10.2118/88989-PA

    Google Scholar 

  60. Voskov, D., Zaydullin, R., Lucia, A.: Heavy oil recovery efficiency using SAGD, SAGD with propane co-injection and STRIP-SAGD. Comput. Chem. Eng. 88, 115–125 (2016). https://doi.org/10.1016/j.compchemeng.2016.02.010

    Article  Google Scholar 

  61. Voskov, D.V., Tchelepi, H.A.: Comparison of nonlinear formulations for two-phase multi-component EoS based simulation. J. Pet. Sci. Eng. 82–83, 101–111 (2012). https://doi.org/10.1016/j.petrol.2011.10.012

    Article  Google Scholar 

  62. Wallis, J.R.: Incomplete gaussian elimination as a preconditioning for generalized conjugate gradient acceleration. In: 7th SPE Reservoir Simulation Symposium. San Francisco, USA (1983). https://doi.org/10.2118/12265-MS

  63. Wheeler, M.F., Gai, X.: Iteratively coupled mixed and Galerkin finite element methods for poro-elasticity. Num Methods Partial Differential Equations 23, 785–797 (2007). https://doi.org/10.1002/num.20258

    Article  Google Scholar 

  64. White, J.A., Castelletto, N., Tchelepi, H.A.: Block-partitioned solvers for coupled poromechanics: a unified framework. Comput. Methods Appl. Mech. Eng. 303, 55–74 (2016). https://doi.org/10.1016/j.cma.2016.01.008

    Article  Google Scholar 

  65. White, M., Oostrom, M.: Stomp: subsurface transport over multiple phases. version 4.0, user’s guide. Richland: Pacific Northwest National Laboratory (2006)

  66. Yang, D., Moridis, G.J., Blasingame, T.A.: A fully coupled multiphase flow and geomechanics solver for highly heterogeneous porous media. J. Comput. Appl. Math. 270, 417–432 (2014). https://doi.org/10.1016/j.cam.2013.12.029

    Article  Google Scholar 

  67. Younis, R.M.: Modern advances in software and solution algorithms for reservoir simulation. Ph.D. thesis Stanford University (2011)

  68. Zaydullin, R., Voskov, D., Tchelepi, H.: Comparison of eos-based and k-values-based methods for three-phase thermal simulation. Transport in Porous Media, (pp. 1–24) (2016a). https://doi.org/10.1007/s11242-016-0795-7

  69. Zaydullin, R., Voskov, D., Tchelepi, H.: Phase-state identification bypass method for three-phase thermal compositional simulation. Comput. Geosci. 20, 461–474 (2016b). https://doi.org/10.1007/s10596-015-9510-y

    Article  Google Scholar 

  70. Zhou, Y., Jiang, Y., Tchelepi, H.: A scalable multistage linear solver for reservoir models with multisegment wells. Comput. Geosci. 17, 197–216 (2013a). https://doi.org/10.1007/s10596-012-9324-0

    Article  Google Scholar 

  71. Zhou, Y., Jiang, Y., Tchelepi, H.A.: A scalable multistage linear solver for reservoir models with multisegment wells. Comput. Geosci. 17, 197–216 (2013b)

    Article  Google Scholar 

  72. Zienkiewicz, O., Paul, D., Chan, A.: Unconditionally stable staggered solution procedure for soil-pore fluid interaction problems. Int. J. Numer. Methods Eng. 26, 1039–1055 (1988). https://doi.org/10.1002/nme.1620260504

    Article  Google Scholar 

  73. Zienkiewicz, O., Taylor, R.: The finite element method for solid and structural mechanics. Elsevier, Amsterdam (2005)

    Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support provided by the Reservoir Simulation Industrial Affiliates Consortium at Stanford University (SUPRI-B) and Total S.A. through the Stanford Total Enhanced Modeling of Source rock (STEMS) project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. T. Garipov, P. Tomin or H. A. Tchelepi.

Appendices

Appendix A: Return-mapping algorithm

In this section, we describe the implementation of a return-mapping algorithm for the proposed plasticity model. We assume that the plastic flow potential function has the same form as the plastic yield function (associative plasticity) and consider isotropic hardening/softening behavior in the material of the payzone. For the plasticity, we use the Drucker–Prager model given by Eq. 14 with thermal softening and mechanical hardening. We use the General Closest Point Projection algorithm [56] to determine the plasticity components of the total deformation. The proposed thermo-plasticity model is given in terms of Biot’s effective stresses σ″ = σ + bP. Alternatively, the response can be formulated in terms of Terzaghi’s effective stresses σ′ = σ + P, and this formulation can be performed in the developed framework without significant modifications.

Using the total stress definition given in Eq. 12 and following [73], the plastic strain tensor rate is assumed to be given as a solution of the following system of equations:

$$\begin{array}{@{}rcl@{}} &\mathcal{F}\left( \boldsymbol{\sigma}^{\prime\prime}, c \right) = 0, \end{array} $$
(A.1a)
$$\begin{array}{@{}rcl@{}} &\dot{\boldsymbol{\epsilon}^{p}} = \dot{\lambda} \frac{\partial \mathcal{F}} {\partial \boldsymbol{\sigma}^{\prime\prime}} , \end{array}$$
(A.1b)
$$\begin{array}{@{}rcl@{}} &\dot{\boldsymbol{\sigma}^{\prime\prime}} = \mathbb{C} \cdot \left( \dot{\boldsymbol{\epsilon}} - \dot{\boldsymbol{\epsilon}^{p}} \right) - \mathfrak{a} \dot{T}. \end{array} $$
(A.1c)

where a dot denotes the rate, i.e., the change between loading or time steps. Here, \(\mathcal {F}\) is the yield function, λ is the proportionality constant, and \( \mathfrak {a} = \mathbf {a} + \frac {\partial \mathbf {a}}{\partial T} \cdot T -\frac {\partial \mathbb {C}}{\partial T} \cdot \left (\boldsymbol {\epsilon } - \boldsymbol {\epsilon }^{p} \right ). \) The system of equations is supplemented by the cohesion increment relationship given as:

$$ \dot c = H_{v} \dot {\epsilon_{v}^{p}} - H_{t} \dot T, $$
(A.2)

where Hv and Ht are two material parameters, \({\epsilon _{v}^{p}}=\text {tr}(\boldsymbol {\epsilon }^{p})\) is the volumetric plastic strain.

As previously, the indices n + 1 and n refer to the current and previous time steps, respectively. A discrete representation of system Eq. A.1a can be written as [25]:

$$\begin{array}{@{}rcl@{}} &&\mathcal{F}\left( \boldsymbol{\sigma}^{\prime\prime}_{n + 1}, c_{n + 1} \right) = 0, \end{array} $$
(A.3a)
$$\begin{array}{@{}rcl@{}} &&-\boldsymbol{\epsilon}^{p}_{n + 1} + \boldsymbol{\epsilon}^{p}_{n} + {\Delta}\lambda \frac{\partial \mathcal{F}} {\partial \boldsymbol{\sigma}^{\prime\prime}_{n + 1}} = 0, \end{array} $$
(A.3b)
$$\begin{array}{@{}rcl@{}} &&\boldsymbol{\sigma}^{\prime\prime}_{n + 1}\,-\,\boldsymbol{\sigma}^{\prime\prime}_{n} \,=\, \mathbb{C} \cdot \left( \boldsymbol{\epsilon}_{n + 1}\,-\,\boldsymbol{\epsilon}_{n} \,-\, \boldsymbol{\epsilon}^{p}_{n + 1}\,+\,\boldsymbol{\epsilon}^{p}_{n} \right) - \mathfrak{a}_{n + 1} \left( T_{n + 1}-T_{n} \right), \end{array} $$
(A.3c)
$$\begin{array}{@{}rcl@{}} &&c_{n + 1} = c_{n} + H_{v}\left( \boldsymbol{\epsilon}^{p}_{v,n + 1} -\boldsymbol{\epsilon}^{p}_{v,n} \right) - H_{t}\left( T_{n + 1}- T_{n} \right), \end{array} $$
(A.3d)

where Δλ = λn+ 1λn. The values Tn+ 1, 𝜖n+ 1 are fixed during the return mapping step. System Eq. A.3d is nonlinear and can be solved [24] using Newton’s method with respect to the primary unknowns (σn+ 1, Δλ). However, this requires the calculation of the Hessian of the yield function, \(\mathcal {F}\), which is a challenging procedure because of the need to compute the second derivatives of a complex function.

The solution (σn+ 1, Δλ) of system (A.3d) implicitly depends on 𝜖 and T. Consequently, the plastic strain 𝜖p also depends on 𝜖 and T. Thus, the incremental form of Eq. A.1c may be written as [46]:

$$\dot{\boldsymbol{\sigma}^{\prime\prime}} = \mathbb{C}^{ep} \cdot \dot{\boldsymbol{\epsilon}} - \mathbf{a}^{ep} \dot{T}. $$
(A.4)

To ensure a complete linearization of the global equations, the derivatives \(\left (\frac {\partial \boldsymbol {\sigma }^{\prime \prime }}{\partial \boldsymbol {\epsilon }}, \frac {\partial \boldsymbol {\sigma }^{\prime \prime }}{\partial T} \right )\) must be derived, which is equivalent to the calculation of consistent elasto-plastic tensors \(\left (\mathbb {C}^{\text {ep}}, \mathbf{a} ^{\text {ep}} \right )\). This is a critical aspect of the plasticity return-mapping algorithms [6, 13]. For this purpose, we employ an inverse-theorem approach implemented in AD-GPRS [61]. The system Eq. A.3d can be written in matrix notation as:

$$ \mathbb{R}_{7} = \mathbb{M}_{7 \times 7} \cdot \mathbb{X}_{7} = 0, $$
(A.5)

where \(\mathbb {X}_{7}\) is the vector of unknowns (six components of σn+ 1 plus Δλ). After we obtain the solution \(\mathbb {X}_{7}\), we compute the matrix of derivatives \(\mathbb {J}_{7 \times 7}\) as follows:

$$ \mathbb{J}_{7 \times 7} = \frac{\partial \mathbb{X}_{7}}{\partial \mathbb{Y}_{7}} = \left( \frac{\partial \mathbb{R}_{7}}{\partial \mathbb{X}_{7}} \right)^{-1} \cdot \frac{\partial \mathbb{R}_{7}}{\partial \mathbb{Y}_{7}}, $$
(A.6)

where \(\mathbb {Y}_{7} = \left ({\boldsymbol{\epsilon}}_{n + 1}, T_{n + 1} \right )\). Then, the elasto-plastic tensors are simply the components of the matrix \(\mathbb {J}_{7 ~\times ~7}\):

$$ \left[\mathbb{C}^{\text{ep}} \quad \mathbf{a}^{\text{ep}} \right] = \mathbb{J}_{7 \times 6} $$
(A.7)

Next, we consider the solution procedure for a given time interval (tn, tn+ 1). The state of the material is known at time step tn, and we need to compute the stress σn+ 1 and the tensors an+ 1 and \(\mathbb {C}_{n + 1}\) at time step tn+ 1. For this purpose, we use an implicit integration algorithm. The fundamental idea relies on performing a predictor step in which the loading increment is elastic (plastic increment is zero). This allows us to estimate the current stress (trial solution) and evaluate the yield function. If the resulting yield function is less than zero, the trial solution is accepted and all internal state variables are updated assuming elastic deformation; otherwise, the trial state is incorrect and the material state should be plastic. In this case, we iteratively project stresses to the yield surface by solving Eq. A.3d. A high-level view of the basic steps is outlined in Algorithm 1.

figure a

Appendix B: Solution strategies

In this section, we provide details of the implementation of the FI and SI schemes. For FI, the mass, energy, and momentum conservation equations are solved simultaneously, and the corresponding system of nonlinear equations is solved using Newton’s method with a damped update. For the SI method, we partition the problem and solve each subproblem sequentially, iterating between the solutions. As previously, we define the fluid variables R = (p, T, x) (pressure p, temperature T, and phase compositions x) and the mechanics variables U = (u, 𝜖p) (displacement u and plastic strain 𝜖p). We use the backward Euler time-integration scheme, where the simulation time step Δt is defined by Δt = tn+ 1tn and the indices n + 1, n refer to the current and previous time steps, respectively. We always use the solution from the previous converged time step as the initial guess for the current time step (Algorithm 2Footnote 1).

figure b
figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garipov, T.T., Tomin, P., Rin, R. et al. Unified thermo-compositional-mechanical framework for reservoir simulation. Comput Geosci 22, 1039–1057 (2018). https://doi.org/10.1007/s10596-018-9737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-018-9737-5

Keywords

Navigation