Hybrid three-scale model for evolving pore-scale geometries

  • Timothy B. Costa
  • Kenneth Kennedy
  • Malgorzata Peszynska
Original paper
  • 19 Downloads

Abstract

We consider flow and upscaling of flow properties from pore scale to Darcy scale, when the pore-scale geometry is changing. The idea is to avoid having to solve for the pore evolution at the pore scale, because this results in unmanageable complexity. We propose to use stochastic modeling to parametrize plausible modifications of the pore geometry and to construct distributions of permeability parametrized by Darcy-scale variables. To localize the effects of, e.g., clogging, we introduce an intermediate scale of pore-network models. We use local Stokes solvers to calibrate the throat permeability.

Keywords

Pore-scale simulations Pore-network models Flow and transport evolving geometries Upscaling Downscaling Random geometries Immersed volume Stokes model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Wewould like to gratefully acknowledge the collaborations with two colleagues, and our financial support. We also appreciate the comments from anonymous reviewers which helped to improve this manuscript.

Dr Anna Trykozko from University of Warsaw helped us to validate the software HybGe-Flow3D by running comparisons of permeabilities we obtained with those reported in [46], which were based on flow simulations with ANSYS Fluent.

We also want to thank Dr Masa Prodanovic from The University of Texas at Austin who helped us with the software 3DMA-Rock for pore–network extraction [33].

References

  1. 1.
    Angot, P.: Analysis of singular perturbations on the Brinkman problem for fictitious domain models of viscous flows. Math. Methods Appl. Sci. 22(16), 1395–1412 (1999)CrossRefGoogle Scholar
  2. 2.
    Angot, P., Bruneau, C.H., Fabrie, P.: A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81(4), 497–520 (1999)CrossRefGoogle Scholar
  3. 3.
    Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci. 11(3), 207 (2007)CrossRefGoogle Scholar
  4. 4.
    Arbogast, T., Lehr, H.L.: Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput. Geosci. 10(3), 291–302 (2006)CrossRefGoogle Scholar
  5. 5.
    Auriault, J.L.: On the domain of validity of Brinkman’s equation. Transp. Porous Media 79(2), 215–223 (2009)CrossRefGoogle Scholar
  6. 6.
    Balhoff, M.T., Thomas, S.G., Wheeler, M.F.: Mortar coupling and upscaling of pore-scale models. Comput. Geosci. 12(1), 15–27 (2008)CrossRefGoogle Scholar
  7. 7.
    Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1972)Google Scholar
  8. 8.
    Bear, J., Cheng, A.D.: Modeling Groundwater Flow and Contaminant Transport, vol. 23. Springer Science & Business Media (2010)Google Scholar
  9. 9.
    Blunt, M.J.: Flow in porous media–pore-network models and multiphase flow. Curr. Opin. Colloid Interface Sci. 6(3), 197–207 (2001)CrossRefGoogle Scholar
  10. 10.
    Boffi, D., Brezzi, F., Fortin, M., et al.: Mixed Finite Element Methods and Applications, vol. 44. Springer, Berlin (2013)CrossRefGoogle Scholar
  11. 11.
    Bringedal, C., Berre, I., Pop, I.S., Radu, F.A.: A model for non-isothermal flow and mineral precipitation and dissolution in a thin strip. J. Comput. Appl. Math. 289, 346–355 (2015)CrossRefGoogle Scholar
  12. 12.
    Cai, R., Lindquist, W.B., Um, W., Jones, K.W.: Tomographic analysis of reactive flow induced pore structure changes in column experiments. Adv. Water Resour. 32(9), 1396–1403 (2009)CrossRefGoogle Scholar
  13. 13.
    Canuto, C., Kozubek, T.: A fictitious domain approach to the numerical solution of PDEs in stochastic domains. Numer. Math. 107(2), 257–293 (2007)CrossRefGoogle Scholar
  14. 14.
    Cesmelioglu, A., Girault, V., Riviere, B.: Time-dependent coupling of Navier–Stokes and Darcy flows. ESAIM: Math. Model. Numer. Anal. 47(2), 539–554 (2013)CrossRefGoogle Scholar
  15. 15.
    Chu, J., Engquist, B., Prodanovic, M., Tsai, R.: A multiscale method coupling network and continuum models in porous media i: steady-state single phase flow. Multiscale Model. Simul. 10(2), 515–549 (2012)CrossRefGoogle Scholar
  16. 16.
    Costa, T.B.: Hybrid multiscale methods with applications to semiconductors, porous media, and materials science. Ph.D. thesis (2016)Google Scholar
  17. 17.
    Costa, T.B.: HybGe-Flow3D v2.0.0. https://github.com/numsol/HybGe-Flow3D (2017)
  18. 18.
    Crandell, L., Peters, C.A., Um, W., Jones, K.W., Lindquist, W.B.: Changes in the pore network structure of hanford sediment after reaction with caustic tank wastes. J. Contam. Hydrol. 131(1), 89–99 (2012)CrossRefGoogle Scholar
  19. 19.
    Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Physical Rev. E 80(3), 036307 (2009)CrossRefGoogle Scholar
  20. 20.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, vol. 159. Springer Science & Business Media, New York (2013)Google Scholar
  21. 21.
    Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. Handb. Numer. Anal. 7, 713–1018 (2000)Google Scholar
  22. 22.
    Gibson, N.L., Medina, F.P., Peszynska, M., Showalter, R.E.: Evolution of phase transitions in methane hydrate. J. Math. Anal. Appl. 409(2), 816–833 (2014)CrossRefGoogle Scholar
  23. 23.
    Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations(book) (Lecture Notes in Mathematics), vol. 749. Springer, Berlin (1979)CrossRefGoogle Scholar
  24. 24.
    Gordon, A., Powell, C.E.: A preconditioner for fictitious domain formulations of elliptic PDEs on uncertain parameterized domains. SIAM/ASA J. Uncertain. Quantif. 2(1), 622–646 (2014)CrossRefGoogle Scholar
  25. 25.
    Harbrecht, H., Peters, M.: Combination technique based second moment analysis for PDEs on random domains. In: Sparse Grids and Applications - Stuttgart, pp 51–77. Springer, Cham (2014)Google Scholar
  26. 26.
    Harbrecht, H., Peters, M., Siebenmorgen, M.: Numerical solution of elliptic diffusion problems on random domains. Preprint 2014-08, Mathematisches Institut, Universität Basel (2014)Google Scholar
  27. 27.
    Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 1. Averaging procedure. Adv. Water Resour. 2, 131–144 (1979)CrossRefGoogle Scholar
  28. 28.
    Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 2. Mass, momenta, energy, and entropy equations. Adv. Water Resour. 2, 191–203 (1979)CrossRefGoogle Scholar
  29. 29.
    Hornung, U.: Homogenization and Porous Media, vol. 6. Springer Science & Business Media, New Year (2012)Google Scholar
  30. 30.
    Kim, D., Peters, C., Lindquist, W.: Upscaling geochemical reaction rates accompanying acidic CO2-saturated brine flow in sandstone aquifers. Water Resour. Res. 47(1) (2011)Google Scholar
  31. 31.
    Krotkiewski, M., Ligaarden, I.S., Lie, K.A., Schmid, D.W.: On the importance of the Stokes-Brinkman equations for computing effective permeability in karst reservoirs. Commun. Comput. Phys. 10(05), 1315–1332 (2011)CrossRefGoogle Scholar
  32. 32.
    Labs, P.: Paralution v1.0.0. http://www.paralution.com/ (2015)
  33. 33.
    Lindquist, W.B., Lee, S., Oh, W., Venkatarangan, A., Shin, H., Prodanovic, M.: 3DMA-Rock: a software package for automated analysis of rock pore structure in 3-D computed microtomography images. SUNY Stony Brook (2005)Google Scholar
  34. 34.
    Lukarski, M.S.D.: Parallel sparse linear algebra for multi-core and many-core platforms. Ph.D. thesis, Georgia Institute of Technology (2012)Google Scholar
  35. 35.
    Mahabadi, N., Dai, S., Seol, Y., Sup Yun, T., Jang, J.: The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation. Geochem. Geophys. Geosyst. 17(8), 3099–3110 (2016)CrossRefGoogle Scholar
  36. 36.
    Medina, F.P., Peszynska, M.: Hybrid modeling and analysis of multicomponent adsorption with applications to coalbed methane. In: Wolfe, D. (ed.) Porous Media: Theory, Properties, and Applications, chapter 1, pp 1–52. Nova, Commack (2016)Google Scholar
  37. 37.
    Mikelic, A., Jäger, W.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60(4), 1111–1127 (2000)CrossRefGoogle Scholar
  38. 38.
    Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)CrossRefGoogle Scholar
  39. 39.
    Ossiander, M., Peszynska, M., Vasylkivska, V.: Conditional Stochastic Simulations of Flow and Transport with Karhunen-Loeve Expansions, Stochastic Collocation, and Sequential Gaussian Simulation. J. Appl. Math. 2014 (652594), 21 (2014).  https://doi.org/10.1155/2014/652594 Google Scholar
  40. 40.
    Ossiander, M., Peszynska, M., Madsen, L., Mur, A., Harbert, W.: Estimation and simulation for geospatial porosity and permeability data. Environ. Ecol. Stat. 24, 109 (2017).  https://doi.org/10.1007/s10651-016-0362-y CrossRefGoogle Scholar
  41. 41.
    Patankar, S.: Numerical heat transfer and fluid flow. CRC Press, Boca Raton (1980)Google Scholar
  42. 42.
    Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)CrossRefGoogle Scholar
  43. 43.
    Peszyńska, M., Wheeler, M.F., Yotov, I.: Mortar upscaling for multiphase flow in porous media. Comput. Geosci. 6(1), 73–100 (2002)CrossRefGoogle Scholar
  44. 44.
    Peszyńska, M., Trykozko, A., Augustson, K.: Computational upscaling of inertia effects from porescale to mesoscale, pp 695–704. Springer, Berlin (2009)Google Scholar
  45. 45.
    Peszynska, M., Trykozko, A.: Convergence and Stability in Upscaling of Flow with Inertia from Porescale to Mesoscale. Int. J. Multiscale Comput. Eng. 9(2), 215–229 (2011).  https://doi.org/10.1615/IntJMultCompEng.v9.i2.60 CrossRefGoogle Scholar
  46. 46.
    Peszynska, M., Trykozko, A.: Pore-to-core simulations of flow with large velocities using continuum models and imaging data. Comput. Geosci. 17(4), 623–645 (2013)CrossRefGoogle Scholar
  47. 47.
    Peszynska, M., Trykozko, A., Iltis, G., Schlueter, S., Wildenschild, D.: Biofilm growth in porous media: experiments, computational modeling at the porescale, and upscaling. Adv. Water Resour. 95, 288–301 (2016)CrossRefGoogle Scholar
  48. 48.
    Prodanović, M., Lindquist, W., Seright, R.: 3D image-based characterization of fluid displacement in a Berea core. Adv. Water Resour. 30(2), 214–226 (2007)CrossRefGoogle Scholar
  49. 49.
    Pruess, K., Garcia, J.: Multiphase flow dynamics during CO2 disposal into saline aquifers. Environ. Geol. 42(2), 282–295 (2002)CrossRefGoogle Scholar
  50. 50.
    Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. CMCS-BOOK-2009-019. Oxford University Press, Oxford (1999)Google Scholar
  51. 51.
    Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations: an Introduction, vol. 92. Springer, Berlin (2015)Google Scholar
  52. 52.
    Raoof, A., Hassanizadeh, S.M., Leijnse, A.: Upscaling transport of adsorbing solutes in porous media: pore-network modeling. Vadose Zone J. 9(3), 624–636 (2010)CrossRefGoogle Scholar
  53. 53.
    Raoof, A., Nick, H., Hassanizadeh, S., Spiers, C.: Poreflow: a complex pore-network model for simulation of reactive transport in variably saturated porous media. Comput. Geosci. 61, 160–174 (2013)CrossRefGoogle Scholar
  54. 54.
    Russell, T.F., Wheeler, M.F.: Finite element and finite difference methods for continuous flows in porous media. In: The Mathematics of Reservoir Simulation, vol. 1, pp 35–106 (1983)Google Scholar
  55. 55.
    Sánchez-Palencia, E.: Non-homogeneous media and vibration theory. In: Non-homogeneous Media and Vibration Theory, vol. 127 (1980)Google Scholar
  56. 56.
    Schulz, R., Ray, N., Frank, F., Mahato, H., Knabner, P.: Strong solvability up to clogging of an effective diffusion–precipitation model in an evolving porous medium. Eur. J. Appl. Math. 28(2), 179–207 (2017)CrossRefGoogle Scholar
  57. 57.
    Silin, D., Patzek, T.: Pore space morphology analysis using maximal inscribed spheres. Phys. A: Stat. Mech. Appl. 371(2), 336–360 (2006)CrossRefGoogle Scholar
  58. 58.
    Spiteri, E., Juanes, R., Blunt, M.J., Orr, F.M., et al.: Relative-permeability hysteresis: trapping models and application to geological CO2 sequestration. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2005)Google Scholar
  59. 59.
    Tartar, L.: Convergence of the homogenization process. In: Nonhomogeneous Media and Vibration Theory (1980)Google Scholar
  60. 60.
    Trykozko, A., Brouwer, G., Zijl, W.: Downscaling: a complement to homogenization. Int. J. Numer. Anal. Model. 5, 157–170 (2008)Google Scholar
  61. 61.
    Trykozko, A., Zijl, W., Bossavit, A.: Nodal and mixed finite elements for the numerical homogenization of 3D permeability. Comput. Geosci. 5(1), 61–84 (2001)CrossRefGoogle Scholar
  62. 62.
    van Noorden, T.L., Pop, I., Ebigbo, A., Helmig, R.: An upscaled model for biofilm growth in a thin strip. Water Resour. Res. 46(6) (2010)Google Scholar
  63. 63.
    Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Pearson Education (2007)Google Scholar
  64. 64.
    Vo, H.X., Durlofsky, L.J.: A new differentiable parameterization based on principal component analysis for the low-dimensional representation of complex geological models. Math. Geosci. 46(7), 775–813 (2014)CrossRefGoogle Scholar
  65. 65.
    Weinan, E., Engquist, B., Li, X., Ren, W., Vanden-Eijnden, E.: Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2(3), 367–450 (2007)Google Scholar
  66. 66.
    Whitaker, S.: Volume averaging of transport equations. In: Prieur du Plessis, J (ed.) Fluid Transport in Porous Media. Computational Mechanics Publications, Southampton (1997)Google Scholar
  67. 67.
    Xiu, D.: Numerical Methods for Stochastic Computations: a Spectral Method Approach. Princeton University Press, Princeton (2010)Google Scholar
  68. 68.
    Xiu, D., Tartakovsky, D.M.: Numerical methods for differential equations in random domains. SIAM J. Sci. Comput. 28(3), 1167–1185 (2006)CrossRefGoogle Scholar
  69. 69.
    Zijl, W., Trykozko, A.: Numerical homogenization of the absolute permeability using the conformal-nodal and mixed-hybrid finite element method. Transp. Porous Media 44(1), 33–62 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Numerical Solutions, IncCorvallisUSA
  2. 2.Department of MathematicsOregon State UniversityCorvallisUSA

Personalised recommendations