Skip to main content
Log in

Comparison between cell-centered and nodal-based discretization schemes for linear elasticity

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, we study newly developed methods for linear elasticity on polyhedral meshes. Our emphasis is on applications of the methods to geological models. Models of subsurface, and in particular sedimentary rocks, naturally lead to general polyhedral meshes. Numerical methods which can directly handle such representation are highly desirable. Many of the numerical challenges in simulation of subsurface applications come from the lack of robustness and accuracy of numerical methods in the case of highly distorted grids. In this paper, we investigate and compare the Multi-Point Stress Approximation (MPSA) and the Virtual Element Method (VEM) with regard to grid features that are frequently seen in geological models and likely to lead to a lack of accuracy of the methods. In particular, we look at how the methods perform near the incompressible limit. This work shows that both methods are promising for flexible modeling of subsurface mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6, 405–432 (2002)

    Article  Google Scholar 

  2. Agélas, L., Guichard, C., Masson, R.: Convergence of finite volume MPFA 0 type schemes for heterogeneous anisotropic diffusion problems on general meshes. International Journal on Finite Volumes, 7 (2010)

  3. Arnold, D.N., Brezzi, F., Douglas, J.: PEERS: a new mixed finite element for plane elasticity. Japan Journal of Applied Mathematics 1(2), 347–367 (1984)

    Article  Google Scholar 

  4. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Mathematical Models and Methods in Applied Sciences 23(01), 199–214 (2013)

    Article  Google Scholar 

  5. Beirão da Veiga, L., Brezzi, F., Donatella Marini, L.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51(2), 794–812 (2013)

    Article  Google Scholar 

  6. Beirão da Veiga, L., Lipnikov, K., Manzini, G.: Mimetic Finite Difference Method for Elliptic Problems, volume 11 Springer (2014)

  7. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  Google Scholar 

  8. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)

    Article  Google Scholar 

  9. Brezzi, F., Lipnikov, K., Simoncini, V.: A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15(10), 1533–1551 (2005)

    Article  Google Scholar 

  10. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160 (2014)

    Article  Google Scholar 

  11. Haga, J.B., Osnes, H., Langtangen, H.P.: On the causes of pressure oscillations in low-permeable and low-compressible porous media. Int. J. Numer. Anal. Methods Geomech. 36(12), 1507–1522 (2012)

    Article  Google Scholar 

  12. Keilegavlen, E., Nordbotten, J.M.: Finite volume methods for elasticity with weak symmetry. Int. J. Numer. Methods Eng. NME-Jul-16-0496.R2 (2017)

  13. Klausen, R.A., Winther, R.: Convergence of multipoint flux approximations on quadrilateral grids. Numerical Methods for Partial Differential Equations 22(6), 1438–1454 (2006)

    Article  Google Scholar 

  14. Klausen, R.A., Winther, R.: Robust convergence of multi point flux approximation on rough grids. Numer. Math. 104(3), 317–337 (2006)

    Article  Google Scholar 

  15. Lie, K.-A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open source MATLAB implementation of consistent discretisations on complex grids. Comput. Geosci. 16, 297–322 (2012)

    Article  Google Scholar 

  16. Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys. 257, 1163–1227 (2014)

    Article  Google Scholar 

  17. Lipnikov, K., Shashkov, M., Yotov, I.: Local flux mimetic finite difference methods. Numer. Math. 112(1), 115–152 (2009)

    Article  Google Scholar 

  18. The MATLAB reservoir simulation toolbox, version 2016a, 7 (2016)

  19. Nagtegaal, J.C., Parks, D.M., Rice, J.R.: On numerically accurate finite element solutions in the fully plastic range. Comput. Methods Appl. Mech. Eng. 4(2), 153–177 (1974)

    Article  Google Scholar 

  20. Nilsen, H.M., Lie, K.-A., Natvig, J.R.: Accurate modelling of faults by multipoint, mimetic, and mixed methods. SPE J. 17(2), 568–579 (2012)

    Article  Google Scholar 

  21. Nordbotten, J.M.: Cell-centered finite volume discretizations for deformable porous media. Int. J. Numer. Methods Eng. 100(6), 399–418 (2014)

    Article  Google Scholar 

  22. Nordbotten, J.M.: Convergence of a cell-centered finite volume discretization for linear elasticity. SIAM J. Numer. Anal. 53(6), 2605–2625 (2015)

    Article  Google Scholar 

  23. Nordbotten, J.M.: Stable cell-centered finite volume discretization for biot equations. SIAM J. Numer. Anal. 54(2), 942–968 (2016)

    Article  Google Scholar 

  24. Raynaud, X., Nilsen, H.M., Andersen, O.: Virtual element method for geomechanical simulations of reservoir models. In: ECMOR XV–15th European Conference on the Mathematics of Oil Recovery, Amsterdam, Netherlands (2016)

  25. Raynaud, X., Nilsen, H.M., Andersen, O.: Virtual Element Method for Geomechanics on Reservoir Grids. arXiv:1606.09508v2 (2017)

  26. Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. part 1: the recovery technique. Int. J. Numer. Methods Eng. 33(7), 1331–1364 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Odd Anderson from SINTEF ICT in Oslo for his help to set up the numerical test case for the Biot model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halvor M. Nilsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nilsen, H.M., Nordbotten, J. & Raynaud, X. Comparison between cell-centered and nodal-based discretization schemes for linear elasticity. Comput Geosci 22, 233–260 (2018). https://doi.org/10.1007/s10596-017-9687-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9687-3

Keywords

Navigation