Computational Geosciences

, Volume 22, Issue 1, pp 195–230 | Cite as

Interior boundary-aligned unstructured grid generation and cell-centered versus vertex-centered CVD-MPFA performance

  • Shahid Manzoor
  • Michael G. Edwards
  • Ali H. Dogru
  • Tareq M. Al-Shaalan
Open Access
Original Paper


Grid generation for reservoir simulation must honor classical key constraints and be boundary aligned such that control-volume boundaries are aligned with geological features such as layers, shale barriers, fractures, faults, pinch-outs, and multilateral wells. An unstructured grid generation procedure is proposed that automates control-volume and/or control point boundary alignment and yields a PEBI-mesh both with respect to primal and dual (essentially PEBI) cells. In order to honor geological features in the primal configuration, we introduce the idea of protection circles, and to generate a dual-cell feature based grid, we construct halos around key geological features. The grids generated are employed to study comparative performance of cell-centred versus cell-vertex control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulations using equivalent degrees of freedom. The formulation of CVD-MPFA schemes in cell-centred and cell-vertex modes is analogous and requires switching control volume from primal to dual or vice versa together with appropriate data structures and boundary conditions. The relative benefits of both types of approximation, i.e., cell-centred versus vertex-centred, are made clear in terms of flow resolution and degrees of freedom required.


BAG PEBI-Grid Unstructured Delaunay triangulation Control-volume distributed multipoint flux approximation Cell-Centred vs vertex-centred CVD-MPFA TPFA 



We gratefully acknowledge Saudi Aramco for supporting this work.


  1. 1.
    Aavatsmark, I., Barkve, T., Boe, O., Mannseth, M.: Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: Derivation of the methods. SIAM J. Sci. Comput. 19, 1700–1716 (1998)CrossRefGoogle Scholar
  2. 2.
    Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6(3), 405–432 (2002)CrossRefGoogle Scholar
  3. 3.
    Aavatsmark, I., Eigestad, G.T., Mallison, B.T., Nordbotten, J.M.: A compact multipoint flux approximation method with improved robustness. Numer. Partial Diff. Eqns. 24(5), 1329–1360 (2008)CrossRefGoogle Scholar
  4. 4.
    Arnold, N.D.: Mixed finite element methods for elliptic problems. Comput. Methods Appl. Mech. Eng., 281–300 (1990)Google Scholar
  5. 5.
    Arbogast, T., Douglas, J. Jr., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21(4), 823–836 (1990)CrossRefGoogle Scholar
  6. 6.
    Aziz, K., Settari, A.: Use of irregular grid in reservoir simulation. Soc. Pet. Eng. J. 12(2), 103–114 (1972)CrossRefGoogle Scholar
  7. 7.
    Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Elsevier (1979)Google Scholar
  8. 8.
    Barth, T.: Aspects of Unstructured Grids and Finite Volume Solvers for the Euler and Navier-Stokes Equations. Computational Fluid Dynamics No. 1994–04 in Lecture Series von Karman Institute for Fluid Dynamics (1994)Google Scholar
  9. 9.
    Branets, L., Ghai, S.S., Lyons, S.L., Wu, X.H.: Efficient and Accurate Reservoir Modeling using Adaptive Gridding with Global Scale Up. Society of Petroleum Engineers, SPE Reservoir Simulation Symposium, 2–4 February, The Woodlands Texas(SPE-118946-MS) (2009)Google Scholar
  10. 10.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991)Google Scholar
  11. 11.
    Castellini, A.: Flow Based Grids for Reservoir Simulation MS Thesis, Stanford University, Stanford, CA, USA (2001)Google Scholar
  12. 12.
    Contreras, D., Hitschfeld-Kahler, N.: Generation of Polyhedral Delaunay Meshes Procedia Engineering, vol. 82, pp. 291–300 (2014)Google Scholar
  13. 13.
    Courrioux, G., Nullans, S., Guillen, A., Boissonnat, J.D., Repusseau, P., Renaud, X., Thibaut, M.: 3D volumetric modelling of Cadomian terranes (Northern Brittany, France): an automatic method using Voronoi diagrams. Tectonophysics 331, 181–196 (2001)CrossRefGoogle Scholar
  14. 14.
    Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., Teillaud, M.: Splitting a delaunay triangulation in linear time. Algorithmica 34, 39–46 (2002). CrossRefGoogle Scholar
  15. 15.
    Deutsch, C.V., Tran, T.T.: Geostatistical assignment of reservoir properties on unstructured grids. Society of petroleum engineers SPE-77427-MS (2002)Google Scholar
  16. 16.
    Diskin, B., Thomas, J., Nielsen, E., White, J., Nishikawa, H.: Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations Part I: Viscous Fluxes. 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition Orlando Florida (2009)Google Scholar
  17. 17.
    Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: Applications and algorithms. J. Soc. Ind. Appl. Math. (SIAM) Rev. 41(4), 637–676 (1999)Google Scholar
  18. 18.
    Edelsbrunner, H.: Geometry and Topology for Mesh Generation. In: Ciarlet, P.G., Iserles, A., Kohn, R.V., Wright, M.H. (eds.) Delaunay triangulations, p. 8. Cambridge University Press (2006)Google Scholar
  19. 19.
    Edwards, M.G., Rogers, C.F.: Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2, 259–290 (1998)CrossRefGoogle Scholar
  20. 20.
    Edwards, M.G.: Unstructured, control-volume distributed, full-tensor finite volume schemes with flow based grids. Comput. Geosci. 6, 433–452 (2002)CrossRefGoogle Scholar
  21. 21.
    Edwards, M.G.: Higher-resolution hyperbolic-coupled-elliptic flux-continuous CVD schemes on structured and unstructured grids in 2-D. Int. J. Numer. Methods Fluids 51(9-10), 1059–1077 (2006)CrossRefGoogle Scholar
  22. 22.
    Edwards, M.G., Zheng, H.: A quasi-positive family of continuous Darcy-flux finite-volume schemes with full pressure support. J. Comput. Phys. 227, 9333–9364 (2008)CrossRefGoogle Scholar
  23. 23.
    Pal, M., Edwards, M.G.: Q-families of CVD(MPFA) schemes on general elements: numerical convergence and the maximum principle. Arch. Comput. Meth. Eng. 17(2), 137–189 (2010)CrossRefGoogle Scholar
  24. 24.
    Friis, H.A., Edwards, M.G., Mykkeltveit, J.: Symmetric positive definite flux-continuous full-tensor finite-volume schemes on unstructured cell-centered triangular grids. SIAM J. Sci. Comput. 31, 1192–1220 (2008)CrossRefGoogle Scholar
  25. 25.
    Friis, H.A., Edwards, M.G.: A family of MPFA finite-volume schemes with full pressure support for the general tensor pressure equation on cell-centered triangular grids. J. Comput. Phys. 230(1), 205–231 (2011)CrossRefGoogle Scholar
  26. 26.
    Edwards, M.G., Zheng, H., Lamine, S., Pal, M.: Continuous elliptic and multi-dimensional hyperbolic darcy-flux finite-volume methods. Comput. Fluids 46(1), 12–22 (2011)CrossRefGoogle Scholar
  27. 27.
    Edwards, M.G., Zheng, H.: Quasi M-Matrix multifamily continuous Darcy-Flux approximations with full pressure support on structured and unstructured grids in three dimensions. SIAM J. Sci. Comput. 33(2), 455–487 (2011)CrossRefGoogle Scholar
  28. 28.
    Edwards, M.G., Zheng, H.: Double-families of Quasi-positive Darcy-flux approximations with highly anisotropic tensors on structured and unstructured grids. J. Comput. Phys. 229(3), 594–625 (2010)CrossRefGoogle Scholar
  29. 29.
    Fortune, S.: Voronoi Diagrams and Delaunay Triangulations. In: Goodman, J.E., O’rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 377–388 (1997)Google Scholar
  30. 30.
    Fortune, S.: A Note on Delaunay Diagonal Flips AT&T Bell Laboratories, Murray Hill, NJGoogle Scholar
  31. 31.
    Fung, L.S.K., Ding, X.Y., Dogru, A.H.: An unstructured gridding method for Densely-Spaced complex wells in Full-Field reservoir simulation. SPE reservoir simulation symposium (The Woodlands, Texas, USA), 995–1007 (2013)Google Scholar
  32. 32.
    Frey, P.J., Borouchaki, H., George, P.L.: 3D Delaunay mesh generation coupled with an advancing-front approach. Comput. Methods Appl. Mech. Eng. 157(1-2), 115–131 (1998)CrossRefGoogle Scholar
  33. 33.
    P.L. George, H. Borouchaki: Delaunay Triangulation Delaunay Triangulation and Meshing Applications to Finite Elements, HERMES(Ed), (37, 73-112, 238) (1998)Google Scholar
  34. 34.
    George, P.L., Borouchaki, H., Frey, P.J., Laug, P., Saltel, E.: Mesh Generation and Mesh Adaptivity: Theory and Techniques Encyclopedia of Computational Mechanics, John Wiley & Sons Ltd(Pub) (2004)Google Scholar
  35. 35.
    Guibas, L., Stolfi, J.: Primitives for the manipulation of general subdivisions and the computation of Voronoi. ACM Trans. Graph. 4(2), 74–123 (1985)CrossRefGoogle Scholar
  36. 36.
    Green, P.J., Sibson, R.: Computing dirichlet tessellations in the plane. Comput. J. 21(2), 168–173 (1978)CrossRefGoogle Scholar
  37. 37.
    Hægland, H., Assteerawatt, A., Dahle, H.K., Eigestad, G.T., Helmig, R.: Comparison of cell- and vertex-centered discretization methods for flow in a two-dimensional discrete-fracture-matrix system. Adv. Water Resour. 32(12), 1740–1755 (2009)CrossRefGoogle Scholar
  38. 38.
    Hassan, O., Probert, E.J., Morgan, K., Weatherill, N.P.: Unsteady flow simulation using unstructured meshes. Comput. Methods Appl. Mech. Eng. 189(4), 1247–1275 (2000)CrossRefGoogle Scholar
  39. 39.
    Sazonov, I., Wang, D., Hassan, O., Morgan, K., Weatherill, N.P.: A stitching method for the generation of unstructured meshes for use with co-volume solution techniques. Comput. Methods Appl. Mech. Eng. 195(13-16), 1826–1845 (2006)CrossRefGoogle Scholar
  40. 40.
    Jenkins, C., Ouenes, A., Zellou, A., Wingard, J.: Quantifying and predicting naturally fractured reservoir behavior with continuous fracture models. Am. Assoc. Pet. Geol. 93(11), 1597–1608 (2009)Google Scholar
  41. 41.
    Joe, B.: Construction of three-dimensional Delaunay triangulations using local transformations. Comput. Aided Geometric Design Arch. 8(2), 123–142 (1991)CrossRefGoogle Scholar
  42. 42.
    Karimi-Fard, M.: Growing Region Technique Applied to Grid Generation of Complex Fractured Porous Media European Association of Geoscientists & Engineers – 9th European Conference on the Mathematics of Oil Recovery (2004)Google Scholar
  43. 43.
    Kocabas, I., Maier, F.: Analytical and Numerical Modeling of Tracer Flow in Oil Reservoirs Containing High Permeability Streaks. Society of Petroleum Engineers Middle East Oil and Gas Show and Conference, 10–13 March, Manama, Bahrain (2013)Google Scholar
  44. 44.
    Keilegavlen, E., Aavatsmark, I.: Monotonicity for MPFA methods on triangular grids. Comput. Geosci. 15 (1), 3–16 (2011)CrossRefGoogle Scholar
  45. 45.
    Lawson, C.L.: Properties of n-dimensional triangulations. Comput. Aided Geom. Des. 3(4), 231–246 (1986)CrossRefGoogle Scholar
  46. 46.
    Liebling, T.M., Pournin, L.: Voronoi Diagrams and Delaunay Triangulations: Ubiquitous Siamese Twins. In: Grotschel, M.M. (ed.) Journal of Documenta Mathematica – Optimization Stories, pp. 419–431 (2012)Google Scholar
  47. 47.
    Lee, D.T., Schachter, B.J.: Two algorithms for constructing a Delaunay triangulation. Int. J. Comput. Inform. Sci. 9(3), 219–242 (1980)CrossRefGoogle Scholar
  48. 48.
    Lee, S.H., Durlofsky, L.J., Lough, M.F., Chen, W.H.: Finite difference simulation of geologically complex reservoirs with tensor permeabilities. SPERE 1, 567–574 (1998)CrossRefGoogle Scholar
  49. 49.
    Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes. J. Comput. Phys. 228(3), 703–716 (2009)CrossRefGoogle Scholar
  50. 50.
    Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: Minimal stencil finite volume scheme with the discrete maximum principle. Russ. J. Numer. Anal. Math. Model. 27(4), 369–385 (2012)CrossRefGoogle Scholar
  51. 51.
    Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys. 257, Part B(15), 1163–1227 (2014)Google Scholar
  52. 52.
    Lȯner, R., Parikh, P.: Three dimensional grid generation by advancing front method. Int. J. Numer. Methods Fluids 8, 1135–1149 (1988)CrossRefGoogle Scholar
  53. 53.
    D. Lischinski: Incremental Delaunay Triangulation Graphics Gems IV, pp. 47—59. Academic Press, San DiegoGoogle Scholar
  54. 54.
    Mahani, H., Evazi, M.: Vorticity-Based Perpendicular-Bisector Grids for improved upscaling of Two-Phase flow. SPEJ, 995–1008 (2010)Google Scholar
  55. 55.
    Marina, G., Jon, R: An efficient algorithm for construction of the power diagram from the voronoi diagram in the plane. Int. J. Comput. Math. 61(1-2), 49–61 (1996)CrossRefGoogle Scholar
  56. 56.
    Marcum, D.L., Weatherill, N.P.: Unstructured grid generation using iterative point insertion and local reconnection. AIAA J. 33, 1619–1625 (1995)CrossRefGoogle Scholar
  57. 57.
    Mavriplis, D.J.: An advancing front delaunay triangulation algorithm designed for robustness. J. Comput. Phys. 117, 90–101 (1995)CrossRefGoogle Scholar
  58. 58.
    Merland, R., Lévy, B., Caumon, G.: Building PEBI Grids Conforming to 3D Geological Features Using Centroidal Voronoi Tessellations. In: Marschallinger, R., Zolb, R. (eds.) Mathematical Geosciences at the Crossroads of Theory and Practice – Proceedings of IAMG Conference, pp. 254–265. Slazburg (2011)Google Scholar
  59. 59.
    Mu̇ller, J. D., Roe, P.L., Deconinck, H.: A frontal approach for internal node generation in Delaunay triangulations. Int. J. Numer. Methods Fluids 17(3), 241–255 (1993)CrossRefGoogle Scholar
  60. 60.
    Mlacnik, M., Durlofsky, L.J., Heinemann, Z.E.: Sequentially adapted Flow-Based PEBI grids for reservoir simulation. Soc. Petrol. Eng. 11(3), 317–327 (2007)Google Scholar
  61. 61.
    Mlacnik, M., Durlofsky, L.J.: Unstructured grid optimization for improved monotonicity of discrete solutions of elliptic equations with highly anisotropic coefficients. J. Comput. Phys. 216(1), 337–361 (2006)CrossRefGoogle Scholar
  62. 62.
    Mosser, L.J.: Mapping Geo-Cellular models to unstructured simulation grids society of petroleum engineers (2013)Google Scholar
  63. 63.
    H.M. Nilsen, J.R. Natvig, K-A. Lie: Accurate modeling of faults by multipoint, mimetic, and mixed methods. SPE journal, 17(02) (2012)Google Scholar
  64. 64.
    Palagi, C.L., Aziz, K.: Use of voronoi grid in reservoir simulation. Soc. Petrol. Eng. 2(2), 69–77 (2007)Google Scholar
  65. 65.
    D. Ponting: Corner point grid geometry in reservoir simulation ECMOR i - 1st european conference on the mathematics of oil recovery (1989)Google Scholar
  66. 66.
    Rajan, V.T.: OptiMality of the Delaunay triangulation in \(\mathbb {R}^{d}\). Discrete Comput. Geom. 12(1), 189–202 (1994)CrossRefGoogle Scholar
  67. 67.
    Rebay, S.: Efficient unstructured mesh generation by means of delaunay triangulation and Bowyer-Watson algorithm. J. Comput. Phys. 106(1), 125–138 (1993)CrossRefGoogle Scholar
  68. 68.
    Russell, T., Wheeler, M.F.: Finite element and finite difference methods for continuous flows in porous media. In: Ewing, R.E. (ed.) The Mathematics of Reservoir Simulation, pp. 35–106. Frontiers in Applied Mathematics, SIAM (1984)Google Scholar
  69. 69.
    Sahimi, M., Darvishi, R., Haghighi, M., Rasaei, M.R.: Upscaled unstructured computational grids for efficient simulation of flow in fractured porous media. Transp. Porous Media 83, 195–218 (2010)CrossRefGoogle Scholar
  70. 70.
    Sibson, R.: Locally equiangular triangulations. Comput. J. 21(3), 243–245 (1978)CrossRefGoogle Scholar
  71. 71.
    Sloan, S.W.: A fast algorithm for generating constrained delaunay triangulations. Comput. Struct. 47(3), 441–450 (1993)CrossRefGoogle Scholar
  72. 72.
    Sloan, S.W.: A fast algorithm for constructing Delaunay triangulations in the plane. Adv. Eng. Softw. 9(1), 34–55 (1987)CrossRefGoogle Scholar
  73. 73.
    Sloan, S.W., Houlsby, G.T.: An implementation of Watson’s algorithm for computing 2-dimensional delaunay triangulations. Adv. Eng. Softw. 6(4), 192–197 (1984)CrossRefGoogle Scholar
  74. 74.
    Su, P., Scot, R.L.: A comparison of sequential Delaunay triangulation algorithms. Comput. Geometry–11th ACM Symposium on Comput. Geometry 7(5-6), 361–385 (1997)CrossRefGoogle Scholar
  75. 75.
    Thompson, J.F., Weatherill, N.P.: Chapter: Fundamental Concepts and Approaches. In: Thompson, J.F, Soni, B.K., Weatherill, N.P. (eds.) Handbook of Grid Generation, p. 1998Google Scholar
  76. 76.
    Verma, S.K.: Flexible Grids for Reservoir Simulation. PhD thesis, Stanford University (1996)Google Scholar
  77. 77.
    Watson, D.F.: Computing the n-dimensional Delaunay tessellation with application to Voronoi polytopes. Comput. J. 24(2), 167–172 (1981)CrossRefGoogle Scholar
  78. 78.
    Weatherill, N.P.: Delaunay triangulation in computational fluid dynamics. Comput. Math. Appl. 24(5-6), 129–150 (1992)CrossRefGoogle Scholar
  79. 79.
    Wen, X.H., Durlofsky, L.J., Edwards, M.G.: Upscaling of channel systems in two dimensions using flow based grids. Transp. Porous Media 51, 343–366 (2003)CrossRefGoogle Scholar
  80. 80.
    Wheeler, M.F., Yotov, I.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44:5, 2082–2106 (2006)CrossRefGoogle Scholar
  81. 81.
    R.P. Batycky, M.R. Thiele, K.H. Coats, A. Grindheim, D. Ponting, J.E. Killough, T. Settari, L.K. Thomas, J. Wallis, J.W. Watts, C.H. Whitson: Chapter 17: Reservoir Simulation. In: Lake, L.W. (ed.) Petroleum Engineering Handbook Volume-V, pp. 1399–1478Google Scholar
  82. 82.
    Geuzaine, C., Remacle, J.-F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 0, 1–24 (2009)Google Scholar
  83. 83.
    Hang, S.: Tetgen: a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Transactions on Mathematical Software (TOMS) TOMS Homepage archive 41(2) (2015)Google Scholar
  84. 84.
    Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. Applied Computational Geometry Towards Geometric Engineering, Lecture Notes in Computer Science book series (LNCS volume 1148), pp. 203–222 (2005)Google Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.ZCCE College of EngineeringSwansea UniversitySwanseaUK
  2. 2.EXPEC Advanced Research CenterSaudi AramcoSaudi Arabia

Personalised recommendations