Computational Geosciences

, Volume 22, Issue 1, pp 179–194

# Analysis of a mixed discontinuous Galerkin method for instationary Darcy flow

• Andreas Rupp
• Jochen Schütz
• Peter Knabner
Original Paper

## Abstract

We present an a priori stability and convergence analysis of a new mixed discontinuous Galerkin scheme applied to the instationary Darcy problem. The analysis accounts for a spatially and temporally varying permeability tensor in all estimates. The proposed method is stabilized using penalty terms in the primary and the flux unknowns.

## Keywords

Mixed discontinuous Galerkin method Local discontinuous Galerkin method Instationary Darcy problem Stability and error analysis

## References

1. 1.
Aizinger, V.: A discontinuous Galerkin method for two-and three-dimensional shallow-water equations. Ph.D. thesis, The University of Texas at Austin. http://hdl.handle.net/2152/1863 (2004)
2. 2.
Aizinger, V., Dawson, C.: The local discontinuous Galerkin method for three-dimensional shallow water flow. Comput. Methods Appl. Mech. Eng. 196(4), 734–746 (2007). doi:. https://www.math.fau.de/fileadmin/am1/users/aizinger/AizingerDawson2007.pdf
3. 3.
Aizinger, V., Dawson, C., Cockburn, B., Castillo, P.: The local discontinuous Galerkin method for contaminant transport. Adv. Water Resour. 24(1), 73–87 (2000). doi:
4. 4.
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Num. Anal. 39, 1749–1779 (2002)
5. 5.
Barrios, T.P., Bustinza, R.: An a posteriori error analysis of an augmented discontinuous Galerkin formulation for Darcy flow. Numer. Math. 120(2), 231–269 (2012). doi:
6. 6.
Brezzi, F., Hughes, T., Marini, L., Masud, A.: Mixed discontinuous Galerkin methods for Darcy flow. J. Sci. Comput. 22-23, 119–145 (2005). doi:
7. 7.
Carrero, J., Cockburn, B., Schötzau, D.: Hybridized globally divergence-free LDG methods. Part I: The Stokes problem. Math. Comput. 75(254), 533–563 (2006). doi:
8. 8.
Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2001). doi:
9. 9.
Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the hp-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comput. 71(238), 455–478 (2002). doi:
10. 10.
Cheng, J., Shu, C.W.: High order schemes for CFD: a review. Jisuan Wuli/Chinese J. Comput. Phys. 26 (5), 633–655 (2009)Google Scholar
11. 11.
Ciarlet, P.G., Lions, J.L.: Handbook of numerical analysis. Elsevier (1990)Google Scholar
12. 12.
Cockburn, B., Dawson, C.: Some Extensions of the Local Discontinuous Galerkin Method for Convection-Diffusion Equations in Multidimensions The Proceedings of the Conference on the Mathematics of Finite Elements and Applications: MAFELAP X, pp 225–238. Elsevier (2000)Google Scholar
13. 13.
Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)
14. 14.
Dawson, C.: The p k+1s k local discontinuous Galerkin method for elliptic equations. SIAM J. Numer. Anal. 40(6), 2151–2170 (2002). doi:
15. 15.
Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods. Mathématiques et applications. Springer, Heidelberg (2012)Google Scholar
16. 16.
Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences. Springer, New York (2004)
17. 17.
Hughes, T.J.R., Masud, A., Wan, J.: A stabilized mixed discontinuous Galerkin method for Darcy flow. Comput. Methods Appl. Mech. Engrg. 195(25–28), 3347–3381 (2006). doi:
18. 18.
Huynh, H.: A Flux Reconstruction Approach to High-Order Schemes including Discontinuous Galerkin Methods. In: Collection of Technical Papers - 18Th AIAA Computational Fluid Dynamics Conference, vol. 1, pp. 698–739. doi: (2007)
19. 19.
Knabner, P., Angermann, L.: Numerical methods for elliptic and parabolic partial differential equations. Springer (2003)Google Scholar
20. 20.
Masud, A., Hughes, T.J.R.: A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Engrg. 191(39-40), 4341–4370 (2002). doi:
21. 21.
Nguyen, N., Peraire, J., Cockburn, B.: Hybridizable discontinuous Galerkin methods. Lecture Notes in Computational Science and Engineering 76 LNCSE, 63–84. doi: (2011)
22. 22.
Peraire, J., Persson, P.O.: The compact discontinuous Galerkin (CDG) method for elliptic problems. SIAM J. Sci. Comput. 30(4), 1806–1824 (2007). doi:
23. 23.
Perugia, I., Schötzau, D.: An hp-analysis of the local discontinuous Galerkin method for diffusion problems. J. Sci. Comput. 17(1), 561–571 (2002). doi:
24. 24.
Reed, H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR-73-479, Los Alamos Scientific Laboratory NM (1973)Google Scholar
25. 25.
Shu, C.W.: A brief survey on discontinuous Galerkin methods in computational fluid dynamics. Adv. Mech. 43(6), 541–554 (2013). doi: Google Scholar
26. 26.
Shu, C.W.: High order WENO and DG methods for time-dependent convection-dominated PDEs: A brief survey of several recent developments. J. Comput. Phys. 316, 598–613 (2016). doi:
27. 27.
Sun, S., Wheeler, M.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43(1), 195–219 (2005). doi:
28. 28.
Sun, S., Wheeler, M.: Analysis of discontinuous Galerkin methods for multicomponent reactive transport problems. Comput. Math. Appl. 52(5), 637–650 (2006). doi:
29. 29.
Thomeé, V.: Galerkin Finite Element Methods for Parabolic Problems (2nd ed.) Springer (2006)Google Scholar
30. 30.
Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput.Phys. 7(1), 1–46 (2010). doi: Google Scholar
31. 31.
Zhang, M., Shu, C.W.: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13(03), 395–413 (2003). doi:
32. 32.
Zhang, X., Shu, C.W.: Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: Survey and new developments. Proc. the Royal Soc. A: Math. Phys. Eng. Sci. 467(2134), 2752–2776 (2011). doi:

© Springer International Publishing AG 2017