Advertisement

Computational Geosciences

, Volume 22, Issue 1, pp 107–123 | Cite as

A space-time adaptive method for reservoir flows: formulation and one-dimensional application

  • Savithru Jayasinghe
  • David L. Darmofal
  • Nicholas K. Burgess
  • Marshall C. Galbraith
  • Steven R. Allmaras
Original Paper

Abstract

This paper presents a space-time adaptive framework for solving porous media flow problems, with specific application to reservoir simulation. A fully unstructured mesh discretization of space and time is used instead of a conventional time-marching approach. A space-time discontinuous Galerkin finite element method is employed to achieve a high-order discretization on the anisotropic, unstructured meshes. Anisotropic mesh adaptation is performed to reduce the error of a specified output of interest, by using a posteriori error estimates from the dual-weighted residual method to drive a metric-based mesh optimization algorithm. The space-time adaptive method is tested on a one-dimensional two-phase flow problem, and is found to be more efficient in terms of computational cost (degrees-of-freedom and total runtime) required to achieve a specified output error level, when compared to a conventional first-order time-marching finite volume method and the space-time discontinuous Galerkin method on structured meshes.

Keywords

Unstructured space-time methods Anisotropic mesh adaptation Discontinuous Galerkin High-order Two-phase flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors wish to thank Dr. Eric Dow for reviewing this paper.

References

  1. 1.
    Amaziane, B., Bourgeois, M., El Fatini, M.: Adaptive mesh refinement for a finite volume method for flow and transport of radionuclides in heterogeneous porous media. Oil Gas Sci. Technol. - Rev. IFP Energies Nouvelles 69(4), 687–699 (2014)CrossRefGoogle Scholar
  2. 2.
    Amenta, N., Attali, D.: Abstract complexity of delaunay triangulation for points on lower-dimensional polyhedra (2007)Google Scholar
  3. 3.
    Argyris, J., Scharpf, D.: Finite elements in time and space. Nucl. Eng. Des. 10(4), 456–464 (1969)CrossRefGoogle Scholar
  4. 4.
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)CrossRefGoogle Scholar
  5. 5.
    Aziz, K., Settari, A.: Petroleum reservoir simulation. Elsevier (1979)Google Scholar
  6. 6.
    Babuska, I., Szabo, B.A., Katz, I.N.: The p-version of the finite element method. SIAM J. Numer. Anal. 18(3), 515–545 (1981)CrossRefGoogle Scholar
  7. 7.
    Baker, T.J.: Mesh adaptation strategies for problems in fluid dynamics. Finite Elem. Anal. Des. 25, 243–273 (1997)CrossRefGoogle Scholar
  8. 8.
    Bassi, F., Rebay, S.: GMRES discontinuous Galerkin solution of the compressible Navier-Stokes equations. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.) Discontinuous Galerkin Methods: theory, Computation and Applications, pp. 197–208. Springer, Berlin (2000)Google Scholar
  9. 9.
    Bassi, F., Rebay, S.: Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 40, 197–207 (2002)CrossRefGoogle Scholar
  10. 10.
    Becker, R., Rannacher, R.: A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4, 237–264 (1996)Google Scholar
  11. 11.
    Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation in finite element methods. In: Iserles, A. (ed.) Acta Numerica. Cambridge University Press, Cambridge (2001)Google Scholar
  12. 12.
    Cao, W., Huang, W., Russell, R.D.: Comparison of two-dimensional r-adaptive finite element methods using various error indicators. Math. Comput. Simul. 56(2), 127–143 (2001). Method of linesCrossRefGoogle Scholar
  13. 13.
    Chen, Z., Steeb, H., Diebels, S.: A space-time discontinuous Galerkin method applied to single-phase flow in porous media. Comput. Geosci. 12(4), 525–539 (2008)CrossRefGoogle Scholar
  14. 14.
    Chueh, C., Secanell, M., Bangerth, W., Djilali, N.: Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media. Comput. Fluids 39(9), 1585–1596 (2010)CrossRefGoogle Scholar
  15. 15.
    Davis, T.A.: Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30(2), 196–199 (2004)CrossRefGoogle Scholar
  16. 16.
    Dawson, C., Sun, S., Wheeler, M.F.: Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Eng. 193(23-26), 2565–2580 (2004)CrossRefGoogle Scholar
  17. 17.
    Dogru, A.H., Fung, L.S., Middya, U., Al-Shaalan, T.M., Pita, J.A.: A next-generation parallel reservoir simulator for giant reservoirs Society of Petroleum Engineers (2009)Google Scholar
  18. 18.
    Dwyer, R.A.: Higher-dimensional voronoi diagrams in linear expected time. Discrete Comput. Geom. 6(3), 343–367 (1991)CrossRefGoogle Scholar
  19. 19.
    Epshteyn, Y., Rivière, B.: On the solution of incompressible two-phase flow by a p-version discontinuous Galerkin method. Commun. Numer. Methods Eng. 22(7), 741–751 (2006)CrossRefGoogle Scholar
  20. 20.
    Epshteyn, Y., Rivière, B.: Analysis of hp discontinuous Galerkin methods for incompressible two-phase flow. J. Comput. Appl. Math. 225(2), 487–509 (2009)CrossRefGoogle Scholar
  21. 21.
    Fried, I.: Finite-element analysis of time-dependent phenomena. AIAA J. 7(6), 1170–1173 (1969)CrossRefGoogle Scholar
  22. 22.
    Hartmann, R.: Numerical analysis of higher order discontinuous galerkin finite element methods. In: Deconinck, H. (ed.) VKI, LS 2008-08: CFD/ADIGMA Course on Very High Order Discretization Methods. Von Karman Institute for Fluid Dynamics (2008)Google Scholar
  23. 23.
    Hughes, T.J.R., Hulbert, G.M.: Space-time finite element methods for elastodynamics: formulations and error estimates. Comput. Methods Appl. Mech. Eng. 66, 339–363 (1988)CrossRefGoogle Scholar
  24. 24.
    Hulbert, G.M., Hughes, T.J.R.: Space-time finite element methods for second-order hyperbolic equations. Comput. Methods Appl. Mech. Eng. 84(3), 327–348 (1990)CrossRefGoogle Scholar
  25. 25.
    Jayasinghe, S., Darmofal, D.L., Galbraith, M.C., Burgess, N.K., Allmaras, S.R.: Adjoint analysis of Buckley-Leverett and two-phase flow equations. Comput. Geosci. (submitted) (2016)Google Scholar
  26. 26.
    Jayasinghe, Y.S.: A space-time adaptive method for flows in oil reservoirs. Master’s Thesis, Mass. Inst. of Tech., Department of Aeronautics and Astronautics (2015)Google Scholar
  27. 27.
    Johnson, S.G.: The NLopt nonlinear-optimization package, available at: http://ab-initio.mit.edu/nlopt
  28. 28.
    Klieber, W., Rivière, B.: Adaptive simulations of two-phase flow by discontinuous galerkin methods. Comput. Methods Appl. Mech. Eng. 196(1-3), 404–419 (2006)CrossRefGoogle Scholar
  29. 29.
    Leech, J.: Some sphere packings in higher space. Can. J. Math., 657–682 (1964)Google Scholar
  30. 30.
    Loseille, A., Alauzet, F.: Optimal 3D highly anisotropic mesh adaptation based on the continuous mesh framework. In: Proceedings of the 18th International Meshing Roundtable, pp 575–594. Springer, Berlin (2009)CrossRefGoogle Scholar
  31. 31.
    Loseille, A., Löhner, R.: On 3d anisotropic local remeshing for surface, volume and boundary layers. In: Proceedings of the 18th International Meshing Roundtable, pp 611–630. Springer, Berlin (2009)CrossRefGoogle Scholar
  32. 32.
    Loseille, A., Löhner, R.: Anisotropic adaptive simulations in aerodynamics. AIAA, 2010–169 (2010)Google Scholar
  33. 33.
    Michel, A.: A finite volume scheme for two-phase immiscible flow in porous media. SIAM J. Numer. Anal. 41, 1301–1317 (2003)CrossRefGoogle Scholar
  34. 34.
    Obi, E., Eberle, N., Fil, A., Cao, H.: Giga cell compositional simulation international petroleum technology conference (2014)Google Scholar
  35. 35.
    Oden, J.T.: A general theory of finite elements. II. Applications. Int. J. Numer. Methods Eng. 1(3), 247–259 (1969)CrossRefGoogle Scholar
  36. 36.
    Oden, J.T., Babuska, I., Baumann, C.E.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146, 491–519 (1998)CrossRefGoogle Scholar
  37. 37.
    Peaceman, D.: Fundamentals of numerical reservoir simulation. Elsevier (1977)Google Scholar
  38. 38.
    Rivière, B.: Numerical study of a discontinuous Galerkin method for incompressible two-phase flow ECCOMAS Proceedings. Finland (2004)Google Scholar
  39. 39.
    Rivière, B., Wheeler, M.F.: Discontinuous Galerkin methods for flow and transport problems in porous media. Commun. Numer. Methods Eng. 18(1), 63–68 (2002)CrossRefGoogle Scholar
  40. 40.
    Rivière, B., Wheeler, M.F., Banaś, K.: Part II. Discontinuous Galerkin method applied to a single phase flow in porous media. Comput. Geosci. 4, 337–349 (2000)CrossRefGoogle Scholar
  41. 41.
    Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3(3-4), 337–360 (1999)CrossRefGoogle Scholar
  42. 42.
    Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12(2), 555–573 (2002)CrossRefGoogle Scholar
  43. 43.
    Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H., Kroll, N., May, G., Persson, P.O., van Leer, B., Visbal, M.: High-order cfd methods: current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845 (2013)CrossRefGoogle Scholar
  44. 44.
    Wheeler, M.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)CrossRefGoogle Scholar
  45. 45.
    Yano, M.: An optimization framework for adaptive higher-order discretizations of partial differential equations on anisotropic simplex meshes. PhD thesis, Massachusetts Institute of Technology Department of Aeronautics and Astronautics (2012)Google Scholar
  46. 46.
    Yano, M., Darmofal, D.L.: An optimization-based framework for anisotropic simplex mesh adaptation. J. Comput. Phys. 231(22), 7626–7649 (2012)CrossRefGoogle Scholar
  47. 47.
    Zong, C.: Sphere Packings. Springer, New York (1999)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Savithru Jayasinghe
    • 1
  • David L. Darmofal
    • 1
  • Nicholas K. Burgess
    • 2
  • Marshall C. Galbraith
    • 1
  • Steven R. Allmaras
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Aramco Services CompanyCambridgeUSA

Personalised recommendations