Computational Geosciences

, Volume 22, Issue 1, pp 63–80 | Cite as

A numerical study on the impact of thermal alterations in porous media during hot fluid injection process employing a modified Boussinesq model

  • Abiola D. Obembe
  • M. Enamul Hossain
  • Ben-Mansour Rached
Original Paper


The Oberbeck-Boussinesq (OB) approximation is widely employed as a simplifying assumption for density-dependent flow problems. It reduces the governing differential equations to simpler forms, which can be handled analytically or numerically. In this study, a modified OB model is formulated to account for the variation of rock permeability and porosity with temperature during the hot fluid injection process in an oil-saturated porous medium under the assumption of local thermal equilibrium (LTE). The mathematical model is solved numerically using a fully implicit control volume finite difference discretization with the successive over relaxation (SOR) method to handle the non-linearity. Subsequently, the numerical model is validated with the analytical solution of the simplified problem successfully. Through detailed sensitivity analyses, the simulation results reveal the hot fluid injection rate as the most important operational parameter to be optimized for a successful thermal flood. The numerical runs show that that for single-phase core-flood simulation, the effect of temperature on the rock absolute permeability and porosity can be neglected without introducing any significant errors in the estimated recovery and temperature profile.


OB approximation Hot fluid injection Local thermal equilibrium Finite difference Thermal flood 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The author would like to acknowledge the support provided by King Abdulaziz City for Science and Technology (KACST), through the Science and Technology Unit at King Fahd University of Petroleum & Minerals (KFUPM), for funding this work through project no. 11-OIL1661-04, as part of the National Science, Technology and Innovation Plan (NSTIP).


  1. 1.
    Boussinesq, J.: Théorie analytique de la chaleur: mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière. Gauthier-Villars (1903)Google Scholar
  2. 2.
    Oberbeck, A.: Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. 243, 271–292 (1879)CrossRefGoogle Scholar
  3. 3.
    Gartling, D., Hickox, C.: A numerical study of the applicability of the Boussinesq approximation for a fluid saturated porous medium. J. Numer. Methods Fluids 5, 19 (1985)CrossRefGoogle Scholar
  4. 4.
    Karra, P.S., Aziz, K.: A numerical study of transient natural convection in porous media. In: Proceedings of 17th Annual Conference of Canadian Society of Chemical Engineeres, Ontario (1967)Google Scholar
  5. 5.
    Asai, T., Nakasuji, I.: Applicability Of Boussinesq approximation to thermal instability in a shear flow. Spec. Contrib. Geophys. Institute, Kyoto Univ. 10, 49–57 (1970)Google Scholar
  6. 6.
    Barletta, A.: Local energy balance, specific heats and the Oberbeck-Boussinesq approximation. Int. J. Heat Mass Transf. 52, 5266–5270 (2009)CrossRefGoogle Scholar
  7. 7.
    Craig, W.: An existence theory for water waves and the Boussinesq and Korteweg-deVries scaling limits. Commun. Partial Differ. Equ. 10, 787–1003 (1985)CrossRefGoogle Scholar
  8. 8.
    Dirksen, C.: Natural convection in porous media and its effect on segregated forward combustion. Soc. Pet. Eng. J. 6, 267–280 (1966)CrossRefGoogle Scholar
  9. 9.
    Feireisl, E., Schonbek, M.E.: On the Oberbeck-Boussinesq approximation on unbounded domains. In: Nonlinear Partial Differential Equations: The Abel Symposium 2010, pp. 131–168 (2012)Google Scholar
  10. 10.
    Gray, D.D., Giorgini, A.: The validity of the boussinesq approximation for liquids and gases. Int. J. Heat Mass Transf. 19, 545–551 (1976)CrossRefGoogle Scholar
  11. 11.
    Graf, T.: Simulation of geothermal flow in deep sedimentary basins in Alberta. Alberta Energy Resources Conservation Board (2009)Google Scholar
  12. 12.
    Guevara, C., Graf, T.: Evaluation of the Oberbeck-Boussinesq approximation for the numerical simulation of variable-density flow and solute transport in porous media. In: EGU General Assembly Conference Abstracts, p. 3114 (2013)Google Scholar
  13. 13.
    Kolditz, O., Ratke, R., Diersch, H.-J.G., Zielke, W.: Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models. Adv. Water Resour. 21, 27–46 (1998)CrossRefGoogle Scholar
  14. 14.
    Hossain, M.E., Mousavizadegan, S.H., Islam, M.R.: The effects of thermal alterations on formation permeability and porosity. Pet. Sci. Technol. 26, 1282–1302 (2008)CrossRefGoogle Scholar
  15. 15.
    Marpu, D., Satyamurty, V.: Investigations on the validity of Boussinesq approximation on free convection in vertical porous annulus. Wärme-und Stoffübertragung 147, 141–147 (1991)CrossRefGoogle Scholar
  16. 16.
    Peirotti, M.B., Giavedoni, M.D., Deiber, J.A.: Natural convective heat transfer in a rectangular porous cavity with variable fluid properties—validity of the Boussinesq approximation (1987)Google Scholar
  17. 17.
    Johannsen, K.: On the validity of the Boussinesq approximation for the Elder problem. Comput. Geosci. 7, 169–182 (2003)CrossRefGoogle Scholar
  18. 18.
    Landman, A.J., Schotting, R.J.: Transp. Porous. Med. 70, 355 (2007). doi: 10.1007/s11242-007-9104-9
  19. 19.
    Hadjisophocleous, G. V, Sousa, A.C.M.: Three-dimensional numerical predictions of internally heated free convective flows. Wärme-und Stoffübertragung 21, 283–290 (1987)CrossRefGoogle Scholar
  20. 20.
    Rudraiah, N., S.T.N.: Natural convection through vertical porous media. Int. J. Eng. Sci. 15, 589–600 (1977)CrossRefGoogle Scholar
  21. 21.
    Hossain, M.A., Wilson, M.: Natural convection flow in a fluid-saturated porous medium enclosed by non-isothermal walls with heat generation. Int. J. Therm. Sci. 41, 447–454 (2002)CrossRefGoogle Scholar
  22. 22.
    Khanafer, K.M., Chamkha, A.J.: Mixed convection flow in a lid-driven enclosure filled with a fluid-saturated porous medium. Int. J. Heat Mass Transf. 42, 2465–2481 (1999)CrossRefGoogle Scholar
  23. 23.
    Harfash, A.J.: Three-dimensional simulations for convection problem in anisotropic porous media with nonhomogeneous porosity, thermal diffusivity, and variable gravity effects. Transp. Porous Media 102, 43–57 (2014)CrossRefGoogle Scholar
  24. 24.
    Civan, F.: Non-isothermal permeability impairment by fines migration and deposition in porous media including dispersive transport. Transp. Porous Media 85, 233–258 (2010)CrossRefGoogle Scholar
  25. 25.
    Civan, F.: Porous media transport phenomena. Wiley, New York (2011)CrossRefGoogle Scholar
  26. 26.
    Weinbrandt, R.M., Ramey, H.J., Casse, F.J.: The effect of temperature on relative and absolute permeability of sandstones. Soc. Pet. Eng. J. 15, 376–384 (1975)CrossRefGoogle Scholar
  27. 27.
    Bauman, J.H.: Significant parameter identification and characterization of complex in situ reservoir simulations (2012)Google Scholar
  28. 28.
    App, J.F.: Field cases: nonisothermal behavior due to Joule-Thomson and transient fluid expansion/compression effects. In: SPE Annual Technical Conference and Exhibition, 4–7 October, New Orleans, Louisiana (2009)Google Scholar
  29. 29.
    Latham, J.-P., Xiang, J., Belayneh, M., Nick, H.M., Tsang, C.-F., Blunt, M.J.: Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures. Int. J. Rock Mech. Min. Sci. 57, 100–112 (2013)Google Scholar
  30. 30.
    Nield, D.A., Bejan, A.: Convection in porous media. Springer, New York (2006)Google Scholar
  31. 31.
    Nield, D.A.: Modelling fluid flow and heat transfer in a saturated porous medium (2000)Google Scholar
  32. 32.
    Patankar, S.: Series in Computational Methods in Mechanics and Thermal Sciences, pp. 1–197. In: Minkowycz, W.J., Sparrow, E.M. (eds.) . McGraw-Hill Book Company, New York (1980)Google Scholar
  33. 33.
    Chai, J.C., Parthasarathy, G., Lee, H.S., Patankar, S. V: Finite volume radiative heat transfer procedure for irregular geometries. J. Thermophys. Heat Transf. 9, 410–415 (1995)CrossRefGoogle Scholar
  34. 34.
    Barends, F.: Complete solution for transient heat transport in porous media, following Lauwerier’s Concept. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (2010)Google Scholar
  35. 35.
    Cheppelear, J.E., Volek, C.W.: The injection of a hot liquid into a porous medium. Soc. Pet. Eng. J. 9, 100–114 (1969)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Abiola D. Obembe
    • 1
  • M. Enamul Hossain
    • 2
  • Ben-Mansour Rached
    • 3
  1. 1.Department of Petroleum Engineering, College of Petroleum Engineering and GeosciencesKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
  2. 2.Statoil Chair in Reservoir Engineering, Department of Process EngineeringMemorial University of NewfoundlandSt. John’sCanada
  3. 3.Department of Mechanical EngineeringKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia

Personalised recommendations