Advertisement

Computational Geosciences

, Volume 22, Issue 1, pp 29–41 | Cite as

A modified randomized maximum likelihood for improved Bayesian history matching

  • Andreas S. Stordal
  • Geir Nævdal
Original Paper
  • 163 Downloads

Abstract

Randomized maximum likelihood is known in the petroleum reservoir community as a Bayesian history matching technique by means of minimizing a stochastic quadratic objective function. The algorithm is well established and has shown promising results in several applications. For linear models with linear observation operator, the algorithm samples the posterior density accurately. To improve the sampling for nonlinear models, we introduce a generalized version in its simplest form by re-weighting the prior. The weight term is motivated by a sufficiency condition on the expected gradient of the objective function. Recently, an ensemble version of the algorithm was proposed which can be implemented with any simulator. Unfortunately, the method has some practical implementation issues due to computation of low rank pseudo inverse matrices and in practice only the data mismatch part of the objective function is maintained. Here, we take advantage of the fact that the measurement space is often much smaller than the parameter space and project the prior uncertainty from the parameter space to the measurement space to avoid over fitting of data. The proposed algorithms show good performance on synthetic test cases including a 2D reservoir model.

Keywords

Bayesian inversion Ensemble smoothers History matching Randomized maximum likelihood 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The first author acknowledges the Research Council of Norway and the industrial participants, Eni, Petrobras and Total, for financial support through the joint CIPR/IRIS Petromaks project ’4D Seismic History Matching’. The second author acknowledges the Research Council of Norway and the industrial participants, ConocoPhillips Skandinavia AS, BP Norge AS, Det Norske Oljeselskap AS, Eni Norge AS, Maersk Oil Norway AS, DONG Energy AS, Denmark, Statoil Petroleum AS, Engie E&P NORGE AS, Lundin Norway AS, Halliburton AS, Schlumberger Norge AS, Wintershall Norge AS, of The National IOR Centre of Norway for financial support.

References

  1. 1.
    Anderson, J.L.: A non-Gaussian ensemble filter update for data assimilation. Mon. Wea. Rev. 138(11), 4186–4198 (2010). doi: 10.1175/2010MWR3253.1 CrossRefGoogle Scholar
  2. 2.
    Bardsley, J.M., Solonen, A., Haario, H., Laine, M.: Randomize-then-optimize: A method for sampling from posterior distribution in nonlinear inverse problems. SIAM J. Sci. Comput. 36(4), A1895–A1910 (2014)CrossRefGoogle Scholar
  3. 3.
    Bergemann, K., Reich, S.: A mollified ensemble Kalman filter. Q. J. R. Meteorol. Soc. 136(651), 1636–1643 (2010)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Oliver, D.S.: Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Math. Geosci. 44(1), 1–26 (2012)CrossRefGoogle Scholar
  5. 5.
    Chen, Y., Oliver, D.S.: Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Comput. Geosci. 17, 689–703 (2013)CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Oliver, D.S.: History matching of the Norne full-field model with an iterative ensemble smoother. SPE Reserv. Eval. Eng. 17(02), 244–256 (2014)CrossRefGoogle Scholar
  7. 7.
    Cotter, C.J., Reich, S.: Ensemble filter techniques for intermittent data assimilation-a survey. arXiv:1208.6572 (2012)
  8. 8.
    Cotter, S.L., Roberts, G.O., Stuart, A., White, D., et al.: MCMC methods for functions: modifying old algorithms to make them faster. Stat. Sci. 28(3), 424–446 (2013)CrossRefGoogle Scholar
  9. 9.
    El Moselhy, T.A., Marzouk, Y.M.: Bayesian inference with optimal maps. J. Comput. Phys. 231, 7815–7850 (2012)CrossRefGoogle Scholar
  10. 10.
    Emerick, A., Reynolds, A.: Ensemble smoother with multiple data assimilation. Comput. Geosci. 55, 3–15 (2013)CrossRefGoogle Scholar
  11. 11.
    Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer (2007)Google Scholar
  12. 12.
    Evensen, G., Van Leeuwen, P.J.: An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev. 128(6), 1852–1867 (2000)Google Scholar
  13. 13.
    Fossum, K., Mannseth, T.: Parameter sampling capabilities of sequential and simultaneous data assimilation: I. analytical comparison. Inverse Probl. 30(114002), (2014)Google Scholar
  14. 14.
    Fossum, K., Mannseth, T.: Parameter sampling capabilities of sequential and simultaneous data assimilation: I. statistical analysis of numerical results. Inverse Probl. 30(114003), (2014)Google Scholar
  15. 15.
    Hanke, M.: A regularizing Levenberg-Marquardt scheme, with applications to inverse groundwater filtration problems. Inverse Probl. 13, 79–95 (1997)Google Scholar
  16. 16.
    Hoteit, I., Pham, D. -T., Triantafyllou, G., Korres, G.: A New approximative solution of the optimal nonlinear filter for Data Assimilation in Meteorology and Oceanography. Mon. Weather Rev. 136, 317–334 (2008)CrossRefGoogle Scholar
  17. 17.
    Jansen, J.D.: SimSim: A simple reservoir simulator. Departement of Geotechnology, TU, Delft (2011)Google Scholar
  18. 18.
    Kitandis, P.K.: Quasilinear geostatistical theory for inversing. Water Resour. Res. 31(10), 2411–2419 (1995)CrossRefGoogle Scholar
  19. 19.
    Kitanidis, P.K.: Quasi-linear geostatistical theory for inversing. Water Resour. Res. 31(10), 2411–2419 (1995)CrossRefGoogle Scholar
  20. 20.
    Nævdal, G., Mannseth, T., Vefring, E.H.: Near-well reservoir monitoring through ensemble Kalman filter. In: SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma, pp. SPE75235 (2002)Google Scholar
  21. 21.
    Oliver, D.S.: Minimization for conditional simulation: Relationship to optimal transport. J. Comput. Phys. 265, 1–15 (2014)CrossRefGoogle Scholar
  22. 22.
    Oliver, D.S.: Metropolized randomized maximum likelihood for sampling from multimodal distributions arXiv:1507.08563v1 [stat.CO] (2015)
  23. 23.
    Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15(1), 185–221 (2011)CrossRefGoogle Scholar
  24. 24.
    Oliver, D.S., He, N., Reynolds, A.C.: Conditioning permeability fields to pressure data. In: European Conference for the Mathematics of Oil Recovery, V, pp. 1–11 (1996)Google Scholar
  25. 25.
    Shirangi, M.G.: History matching production data and uncertainty assessment with an efficient TSVD parameterization algorithm. J. Pet. Sci. Eng. 113, 54–71 (2014)CrossRefGoogle Scholar
  26. 26.
    Shirangi, M.G., Emerick, A.A.: An improved TSVD-based Levenberg-Marquardt algorithm for history matching and comparison with Gauss-Newton. J. Pet. Sci. Eng. 143, 258–271 (2016)CrossRefGoogle Scholar
  27. 27.
    Skjervheim, J.-A., Evensen, G.: An ensemble smoother for assisted history matching. In SPE Reservoir simulations symposium. The Woodlands, Texas, pp. 21–23. Society of Petroleum Engineers. SPE141929-MS (2011)Google Scholar
  28. 28.
    Stordal, A.: Iterative Bayesian inversion with gaussian mixtures: finite sample implementation and large sample asymptotics. Comput. Geosci. 19(1), 1–15 (2015). ISSN 1420-0597. doi: 10.1007/s10596-014-9444-9 CrossRefGoogle Scholar
  29. 29.
    Stordal, A., Elsheikh, A.: Iterative ensemble smoothers in the annealed importance sampling framework. Adv. Water Resour. 86(Part A), 231–239 (2015)CrossRefGoogle Scholar
  30. 30.
    Stordal, A., Lorentzen, R.: An iterative version of the adaptive gaussian mixture filter. Comput. Geosci. 18(3), 579–595 (2014). doi: 10.1007/s10596-014-9402-6 CrossRefGoogle Scholar
  31. 31.
    Stordal, A., Karlsen, H., Nævdal, G., Skaug, H., Vallès, B.: Bridging the ensemble Kalman filter and particle filters. Comput. Geosci. 15(2), 293–305 (2011)CrossRefGoogle Scholar
  32. 32.
    Tavakoli, R., Reynolds, A.C.: History matching with parameterization based on the singular value decomposition of a dimensionless sensitivity matrix. SPE J. 15(2), 495–508 (June 2010)Google Scholar
  33. 33.
    Tavakoli, R., Reynolds, A.C.: Monte Carlo simulation of permeability fields and reservoir performance predictions with SVD parameterization compared with EnKF. Comput. Geosci. 15, 99–116 (2011)CrossRefGoogle Scholar
  34. 34.
    Valestrand, R., Nævdal, G., Stordal, A.S.: Application of the adaptive Gaussian mixture filter to history match a real field case. In: ECMOR XIII – 13 th European Conference on the Mathematics of Oil Recovery. EAGE, pp. 10–13 (2012)Google Scholar
  35. 35.
    Vo, H.X., Durlofsky, L.J.: A new differentiable parameterization based on prinicipal component analysis for the low-dimensional representation of complex geological models. Math. Geosci. 46, 775–813 (2014)CrossRefGoogle Scholar
  36. 36.
    Vo, H.X., Durlofsky, L.J.: Data assimilation and uncertainty assessment for complex geological models using a new PCA-based parameterization. Comput. Geosci. 19, 747–767 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.International Research Institute of StavangerBergenNorway

Personalised recommendations