Advertisement

Computational Geosciences

, Volume 22, Issue 1, pp 3–28 | Cite as

Identifying influence areas with connectivity analysis – application to the local perturbation of heterogeneity distribution for history matching

  • Véronique Gervais
  • Mickaële Le Ravalec
Original Paper

Abstract

Numerical representations of a target reservoir can help to assess the potential of different development plans. To be as predictive as possible, these representations or models must reproduce the data (static, dynamic) collected on the field. However, constraining reservoir models to dynamic data – the history-matching process – can be very time consuming. Many uncertain parameters need to be taken into account, such as the spatial distribution of petrophysical properties. This distribution is mostly unknown and usually represented by millions of values populating the reservoir grid. Dedicated parameterization techniques make it possible to investigate many spatial distributions from a small number of parameters. The efficiency of the matching process can be improved from the perturbation of specific regions of the reservoir. Distinct approaches can be considered to define such regions. For instance, one can refer to streamlines. The leading idea is to identify areas that influence the production behavior where the data are poorly reproduced. Here, we propose alternative methods based on connectivity analysis to easily provide approximate influence areas for any fluid-flow simulation. The reservoir is viewed as a set of nodes connected by weighted links that characterize the distance between two nodes. The path between nodes (or grid blocks) with the lowest cumulative weight yields an approximate flow path used to define influence areas. The potential of the approach is demonstrated on the basis of 2D synthetic cases for the joint integration of production and 4D saturation data, considering several formulations for the weights attributed to the links.

Keywords

History matching Reservoir partitioning Influence area Connectivity analysis Local perturbation Parameterization Cross-covariance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aanonsen, S.I., Naevdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B.: The ensemble Kalman filter in reservoir engineering—a review. SPE J. 14(3), 393–412 (2009)CrossRefGoogle Scholar
  2. 2.
    Caers, J.: Geostatistical history matching under training-image based geological constraints. SPE J. 8, 218–226 (2003)CrossRefGoogle Scholar
  3. 3.
    Caers, J.: Efficient gradual deformation using a streamline-based proxy method. J. Petrol. Sci. Eng. 39, 57–83 (2003)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Oliver, D.: Cross-covariances and localization for EnKF in multiphase flow data assimilation. Comput. Geosci. 14, 579–601 (2010)CrossRefGoogle Scholar
  5. 5.
    Da Veiga, S., Gervais, V.: Local adaptive parameterization for the history matching of 3D seismic data. Comput. Geosci. 16, 483–498 (2011)CrossRefGoogle Scholar
  6. 6.
    De Lima, A., Lange, A., Schiozer, D.: Assisted history-matching for the characterization and recovery optimization of fractured reservoirs using connectivity analysis. SPE 154392, SPE Europec/EAGE Annual Conference, Copenhagen, Denmark, 4–7 June (2012)Google Scholar
  7. 7.
    Demyanov, V., Backhouse, L., Christie, M.: Geological feature selection in reservoir modeling and history matching with multiple kernel learning. Comput. Geosci. 85, 16–25 (2015)CrossRefGoogle Scholar
  8. 8.
    Devegowda, D., Arroyo-Negrete, E., Datta-Gupta, A.: Flow relevant covariance localization during dynamic data assimilation using EnKF. Adv. Water Resour. 33, 129–145 (2010)CrossRefGoogle Scholar
  9. 9.
    Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959)CrossRefGoogle Scholar
  10. 10.
    Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, Berlin (2007)Google Scholar
  11. 11.
    Gervais, V., Roggero, F.: Integration of saturation data in a history matching process based on adaptive local parameterization. J. Pet. Sci. Eng. 73, 86–98 (2010)CrossRefGoogle Scholar
  12. 12.
    Hamill, T.M., Whitaker, J.S.: Distance-dependent filtering of background error covariance estimate in an ensemble Kalman filter. Mon. Weather Rev. 129, 2276–2790 (2001)Google Scholar
  13. 13.
    Hoffman, B.T., Caers, J.: Regional probability perturbations for history matching. J. Petrol. Sci. Eng. 46, 53–71 (2005)CrossRefGoogle Scholar
  14. 14.
    Hu, L.Y.: Gradual deformation and iterative calibration of Gaussian-related stochastic models. Math. Geol. 32, 87–108 (2000)CrossRefGoogle Scholar
  15. 15.
    Jafarpour, B., McLaughlin, D.: Reservoir characterization with the discrete cosine transform. SPE J. SPE 106453-PA 14(1), 182–201 (2009)Google Scholar
  16. 16.
    Kazemi, A., Stephen, K.D.: Optimal parameter updating in assisted history matching using streamlines as a guide. Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 68, 577–594 (2013)CrossRefGoogle Scholar
  17. 17.
    Langouët, H.: Optimisation sans dérivées sous contraintes: deux applications industrielles en ingénierie de réservoir et en calibration des moteurs. Thèse, Université Nice Sophia Antipolis (2011)Google Scholar
  18. 18.
    Langouët, H., Delbos, F., Sinoquet, D., Da Veiga, S.: A derivative-free optimization method for reservoir characterization inverse problem. In: 12th European Conference on the Mathematics of Oil Recovery, Oxford, UK, 6–9 September (2010)Google Scholar
  19. 19.
    Le Loc’h, G., Galli, A.: Truncated Plurigaussian method: theoretical and practical points of view. In: Baafi, E.Y., Schofields, N.A. (eds.) Geostatistics Wollongong ’96, Kluwe, 211-22 (1997)Google Scholar
  20. 20.
    Le Ravalec-Dupin, M., Da Veiga, S.: Cosimulation as a perturbation method for calibrating porosity and permeability fields to dynamic data. Comput. Geosci. 37, 1400–1412 (2011)CrossRefGoogle Scholar
  21. 21.
    Le Ravalec-Dupin, M., Fenwick, D.H.: A combined geostatistical and streamline based history matching procedure. SPE 77378, Annual Technical Conference and Exhibition, San Antonio, Texas, 29 September–2 October (2002)Google Scholar
  22. 22.
    Le Ravalec, M., Noetinger, B., Hu, L.Y.: The FFT moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning Gaussian simulations. Math. Geol. 32, 701–723 (2000)CrossRefGoogle Scholar
  23. 23.
    MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)Google Scholar
  24. 24.
    Mohamed, L., Christie, M., Demyanov, V., Robert, E., Kachuma, D.: Application of particle swarms for history matching in the Brugge Reservoir. Paper presented at the 2010 SPE ATCE, Florence, Italy, 19–22 September (2010)Google Scholar
  25. 25.
    Oliver, D., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15, 185–221 (2011)CrossRefGoogle Scholar
  26. 26.
    Pollock, D.W.: Semi-analytical computation of path lines for finite-difference models. Ground Water 26, 743–750 (1988)CrossRefGoogle Scholar
  27. 27.
    Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In: Di Pillo, G., Roma, M (eds.) Large-Scale Nonlinear Optimization, pp. 255–297. Springer, New-York (2006)CrossRefGoogle Scholar
  28. 28.
    Preux, C., Le Ravalec, M., Enchéry, G.: Selecting an appropriate upscaled reservoir model based on connectivity analysis. Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 72(5) (2016)Google Scholar
  29. 29.
    Tillier, E., Da Veiga, S., Derfoul, R.: Appropriate formulation of the objective function for the history matching of seismic attributes. Comput. Geosci. 51, 64–73 (2013)CrossRefGoogle Scholar
  30. 30.
    Tillier, E., Le Ravalec, M., Da Veiga, S.: Simultaneous inversion of production data and seismic attributes: application to a synthetic SAGD produced field case. OGST 67(2), 289–301 (2012)Google Scholar
  31. 31.
    Vo, H.X., Durlofsky, L.J.: Regularized kernel PCA for the efficient parameterization of complex geological models. J. Comput. Phys. 322, 859–881 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.IFP Energies nouvellesRueil-MalmaisonFrance

Personalised recommendations