Skip to main content

Advertisement

Log in

Comparison of linear solvers for equilibrium geochemistry computations

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Equilibrium chemistry computations and reactive transport modelling require the intensive use of a linear solver under very specific conditions. The systems to be solved are small or very small (4 × 4 to 20 × 20, occasionally larger) and are very ill-conditioned (condition number up to 10100). These specific conditions have never been investigated in terms of the robustness, accuracy, and efficiency of the linear solver. In this work, we present the specificity of the linear system to be solved. Several direct and iterative solvers are compared using a panel of chemical systems, including or excluding the formation of mineral species. We show that direct and iterative solvers can be used for these problems and propose computational keys to improve the chemical solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walter, A.L., et al.: Modeling of multicomponent reactive transport in groundwater. 2. Metal mobility in aquifers impacted by acidic mine tailings discharge. Water Resour. Res. 30(11), 3149–3158 (1994)

    Article  Google Scholar 

  2. Arora, B., et al.: A reactive transport benchmark on heavy metal cycling in lake sediments Computational Geosciences (2014)

  3. De Windt, L., Leclercq, S., Van der Lee, J.: Assessing the durability of nuclear glass with respect to silica controlling processes in a clayey underground disposal. In: 29th International Symposium on the Scientific Basis for Nuclear Waste Management XXIX. Materials Research Society Symposium Proceedings, Ghent; Belgium (2005)

    Google Scholar 

  4. Hoteit, H., Ackerer, P., Mose, R.: Nuclear waste disposal simulations: Couplex test cases. Comput. Geosci. 8(2), 99–124 (2004)

    Article  Google Scholar 

  5. Tompson, A.F.B., et al.: On the evaluation of groundwater contamination from underground nuclear tests. Environ. Geol. 42(2-3), 235–247 (2002)

    Article  Google Scholar 

  6. Andre, L., et al.: Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France). Energy Convers. Manag. 48(6), 1782–1797 (2007)

    Article  Google Scholar 

  7. Kang, Q., et al.: Pore scale modeling of reactive transport involved in geologic CO2 sequestration. Transp. Porous Media 82(1), 197–213 (2010)

    Article  Google Scholar 

  8. Navarre-Sitchler, A.K., et al.: Elucidating geochemical response of shallow heterogeneous aquifers to CO2 leakage using high-performance computing: implications for monitoring of CO2 sequestration. Adv. Water Resour. 53(0), 45–55 (2013)

    Article  Google Scholar 

  9. Pruess, K., et al.: Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy 29(9-10), 1431–1444 (2004)

    Article  Google Scholar 

  10. Regnault, O., et al.: Etude experimentale de la reactivite du CO2 supercritique vis-a-vis de phases minerales pures. Implications pour la sequestration geologique de CO2. Compt. Rendus Geosci. 337(15), 1331–1339 (2005)

    Article  Google Scholar 

  11. Valocchi, A.J., Street, R.L., Roberts, P.V.: Transport of ion-exchanging solutes in groundwater: chromatographic theory and field simulation. Water Resour. Res. 17, 1517–1527 (1981)

    Article  Google Scholar 

  12. Lichtner, P.C.: Continuum model for simultaneous chemical reactions and mass transport in hydrothermal systems. Geochim. Cosmochim. Acta 49(3), 779–800 (1985)

    Article  Google Scholar 

  13. Appelo, C.A.J.: Hydrogeochemical transport modelling. Proceed. Inf.—Comm. Hydrol. Res. TNO 43, 81–104 (1990)

    Google Scholar 

  14. Yeh, G.T., Tripathi, V.S.: A critical evaluation of recent developments in hydrogeochemical transport models of reactive multichemical components. Water Resour. Res. 25, 93–108 (1989)

    Article  Google Scholar 

  15. Carrayrou, J., et al.: Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems—the MoMaS benchmark case. Computational Geosciences 14(3), 483–502 (2010)

    Article  Google Scholar 

  16. Hammond, G.E., Valocchi, A.J., Lichtner, P.C.: Modeling multicomponent reactive transport on parallel computers using Jacobian-Free Newton Krylov with operator-split preconditioning. In: Hassanizadeh, S.M. (ed.) Developments in water science, computational methods in water resources, Proceedings of the XIVth International Conference on Computational Methods in Water Resources (CMWR XIV), pp 727–734. Elsevier (2002)

  17. Carrayrou, J., Mosé, R., Behra, P.: New efficient algorithm for solving thermodynamic chemistry. AIChE J. 48(4), 894–904 (2002)

    Article  Google Scholar 

  18. Amir, L., Kern, M.: A global method for coupling transport with chemistry in heterogeneous porous media. Comput. Geosci. 14(3), 465–481 (2010)

    Article  Google Scholar 

  19. Quarteroni, A., Sacco, R., Saleri, F.: Numerical mathematics. In: Marsden, J.E., Sirovich, L., Antman. S.S. (eds.) Texts in Applied Mathematics. 2nd edn. Springer, Heidelberg (2007)

  20. Axelsson, O., et al.: Direct solution and incomplete factorization preconditioned conjugate gradient methods. Comparison of algebraic solution methods on a set of benchmark problems in linear elasticity, in STW report. 2000, Department of Mathematics, Catholic University of Nijmegen: Nijmegen, The Netherlands. pp. 1-36

  21. Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., Van Der Vorst, H.: Templates for the solution of linear systems: building blocks for iterative methods, 2nd edn. SIAM, Philadelphia (1994)

    Book  Google Scholar 

  22. Gould, N.I.M., Hu, Y., Scott, J.A.: A numerical evaluation of sparse direct solvers for the solution of large sparse, symmetric linear systems of equations. 2005, Council for the Central Laboratory of the Research Councils

  23. Allaire, G., Kaber, S.M. In: Marsden, J.E., Sirovich, L., Antman, S.S. (eds.) : Numerical linear algebra. Texts in applied mathematics. Springer, New York (2008)

  24. Baldwin, C., et al.: Iterative linear solvers in a 2D radiation-hydrodynamics code: methods and performance. J. Comput. Phys. 154(1), 1–40 (1999)

    Article  Google Scholar 

  25. Chao B.T., L.H.L., Scott, E.J.: On the solution of ill-conditioned, simultaneous, linear, algebraic equations by machine computation, in University of Illinois Bulletin. 1961, University of Illinois

  26. Hadjidimos, A.: Successive overrelaxation (SOR) and related methods. J. Comput. Appl. Math. 123(1-2), 177–199 (2000)

    Article  Google Scholar 

  27. Kalambi, I.B.: A comparison of three iterative methods for the solution of linear equations. J. Appl. Sci. Environ. Manag. 12(4), 53–55 (2008)

    Google Scholar 

  28. Klisinski, M., Runesson, K.: Improved symmetric and non-symmetric solvers for FE calculations. Adv. Eng. Softw. 18(1), 41–51 (1993)

    Article  Google Scholar 

  29. Schenk, O., Gartner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Fut. Gener. Comput. Syst. 20(3), 475–487 (2004)

    Article  Google Scholar 

  30. Xue, X.J., et al.: A direct algorithm for solving ill-conditioned linear algebraic systems. JCPDS-Int. Centre Diffract. Data Adv. X-ray Anal. 42, 629–633 (2000)

    Google Scholar 

  31. Pyzara, A., Bylina, B., Bylina, J.: The influence of a matrix condition number on iterative methods’ convergence (2011)

  32. Hoffmann, J., Kras̈utle, S., Knabner, P.: A parallel global-implicit 2-D solver for reactive transport problems in porous media based on a reduction scheme and its application to the MoMaS benchmark problem. Comput. Geosci. 14(3), 421–433 (2010)

    Article  Google Scholar 

  33. Soleymani, F.: A new method for solving ill-conditioned linear systems. Opuscula Math. 33(2), 337–344 (2013)

    Article  Google Scholar 

  34. Morel, F., Morgan, J.: A numerical method for computing equilibria in aqueous chemical systems. Environ. Sci. Technol. 6(1), 58–67 (1972)

    Article  Google Scholar 

  35. Morel, F.M.M.: Principles of aquatic chemistry. Wiley Interscience, New York (1983)

    Google Scholar 

  36. De Windt, L., et al.: Intercomparison of reactive transport models applied to UO2 oxidative dissolution and uranium migration. J. Contam. Hydrol. 61(1-4), 303–312 (2003)

    Article  Google Scholar 

  37. Jauzein, M., et al.: A flexible computer code for modelling transport in porous media: impact. Geoderma 44(2–3), 95– 113 (1989)

    Article  Google Scholar 

  38. Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water Resour. Invest., Editor. 1999: Denver. p. 312

  39. Van der Lee, J.: CHESS another speciation and surface complexation computer code. E.d.M.d. Paris, Editor. 1993: Fontainebleau. p. 85

  40. Westall, J.C.: MICROQL: a chemical equilibrium program in BASIC. Computation of adsorption equilibria in BASIC. S.F.I.o.T. EAWAG, Editor. 1979: Dübandorf. p. 42

  41. Westall, J.C.: FITEQL ver. 2.1. 1982: Corvallis

  42. Westall, J.C., Zachary, J.L., Morel, F.M.M.: MINEQL: a computer program for the calculation of chemical equilibrium composition of aqueous system. R.M.P. Laboratory, Editor. 1976: Cambridge. p. 91

  43. Walter, L.J., Wolery, T.J.: A monotone-sequences algorithm and FORTRAN IV program for calculation of equilibrium distributions of chemical species. Comput. Geosci. 1, 57–63 (1975)

    Article  Google Scholar 

  44. Wigley, T.M.L.: WATSPEC: a computer program for determining the equilibrium speciation of aqueous solutions. B.G.R.G. Tech. Bull., Editor. 1977. p. 49

  45. Jennings, A.A., Kirkner, D.J., Theis, T.L.: Multicomponent equilibrium chemistry in groundwater quality models. Water Resour. Res. 18, 1089–1096 (1982)

    Article  Google Scholar 

  46. Cederberg, A., Street, R.L., Leckie, J.O.: A groundwater mass transport and equilibrium chemistry model for multicomponent systems. Water Resour Res. 21, 1095–1104 (1985)

    Article  Google Scholar 

  47. Yeh, G.T., Tripathi, V.S.: A model for simulating transport of reactive multispecies components: model development and demonstration. Water Resour. Res. 27(12), 3075–3094 (1991)

    Article  Google Scholar 

  48. Carrayrou, J.: Looking for some reference solutions for the reactive transport benchmark of MoMaS with SPECY. Comput. Geosci. 14(3), 393–403 (2010)

    Article  Google Scholar 

  49. Brassard, P., Bodurtha, P.: A feasible set for chemical speciation problems. Comput. Geosci. 26(3), 277–291 (2000)

    Article  Google Scholar 

  50. Carrayrou, J., Kern, M., Knabner, P.: Reactive transport benchmark of MoMaS. Comput. Geosci. 14 (3), 385–392 (2010)

    Article  Google Scholar 

  51. Fendorf, S.E., Li, G.: Kinetics of chromate reduction by ferrous iron. Environ. Sci. Technol. 30(5), 1614–1617 (1996)

    Article  Google Scholar 

  52. Chilakapati, A., et al.: Groundwater flow, multicomponent transport and biogeochemistry: development and application of a coupled process model. J. Contam. Hydrol. 43(3-4), 303–325 (2000)

    Article  Google Scholar 

  53. Knight, P., Ruiz, D., Ucar, B.: A symmetry preserving algorithm for matrix scaling. SIAM J. Matrix Anal. Appl. 35(3), 931–955 (2014)

    Article  Google Scholar 

  54. Golub, H.V., Van Loan, C.F.: Matrix computations. 3rd ed. The Johns Hopkins University Press, Baltimore (1996)

    Google Scholar 

  55. Davis, T.A., Duff, I.S.: A combined unifrontal/multifrontal method for unsymmetric sparse matrices. ACM Trans. Math. Softw. 25(1), 1–20 (1999)

    Article  Google Scholar 

  56. Woźnicki, Z.: On performance of SOR method for solving nonsymmetric linear systems. J. Comput. Appl. Math. 137(1), 145–176 (2001)

    Article  Google Scholar 

  57. Saad, Y., Van Der Vorst, H.A.: Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math. 123(1-2), 1–33 (2000)

    Article  Google Scholar 

  58. Diersch, H.J.G.: FEFLOW reference manual. DHI-WASY GmbH, Berlin (2009)

    Google Scholar 

  59. Van der Lee, J., et al.: Presentation and application of the reactive transport code HYTEC. In: Hassanizadeh, S.M. (ed.) Developments in Water Science, Computational Methods in Water Resources, Proceedings of the XIVth International Conference on Computational Methods in Water Resources (CMWR XIV), pp 599–606. Elsevier (2002)

  60. Press, W.H., S.A.T., Vettering, W.T., Flannery, B.P.: Numerical recipes in FORTRAN: the art of scientific computation, 2nd edn., pp 123–124. Cambridge University Press, New Yor (1992)

    Google Scholar 

  61. The Linear Algebra Package (LAPACK) can be obtained free of charge from the address listed here: http://www.netlib.org/lapack

  62. Kincaid, D., Cheney, W.: Numerical analysis: mathematics of scientific computing, 3rd edn. American Mathematical Society (2002)

  63. HSL: A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk (2013)

  64. Chapter 8 Systems of nonlinear equations. In: Studies in computational mathematics, Claude, B. Editor. 1997, Elsevier. pp. 287–336

  65. Soleymani, F.: A rapid numerical algorithm to compute matrix inversion. Int. J. Math. Math. Sci. 2012 (2012)

  66. Soleymani, F.: On a fast iterative method for approximate inverse of matrices. Commun. Korean Math. Soc. 28(2), 407–418 (2013)

    Article  Google Scholar 

  67. Morin, K.A.: Simplified explanations and examples of computerized methods for calculating chemical equilibrium in water. Comput. Geosci. 11, 409–416 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Carrayrou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machat, H., Carrayrou, J. Comparison of linear solvers for equilibrium geochemistry computations. Comput Geosci 21, 131–150 (2017). https://doi.org/10.1007/s10596-016-9600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-016-9600-5

Keywords

Navigation