Computational Geosciences

, Volume 20, Issue 6, pp 1211–1229 | Cite as

Bayesian estimation of reservoir properties—effects of uncertainty quantification of 4D seismic data

  • Kjersti Solberg Eikrem
  • Geir Nævdal
  • Morten Jakobsen
  • Yan Chen
Original Paper


This paper shows a history matching workflow with both production and 4D seismic data where the uncertainty of seismic data for history matching comes from Bayesian seismic waveform inversion. We use a synthetic model and perform two seismic surveys, one before start of production and the second after 1 year of production. From the first seismic survey, we estimate the contrast in slowness squared (with uncertainty) and use this estimate to generate an initial estimate of porosity and permeability fields. This ensemble is then updated using the second seismic survey (after inversion to contrasts) and production data with an iterative ensemble smoother. The impact on history matching results from using different uncertainty estimates for the seismic data is investigated. From the Bayesian seismic inversion, we get a covariance matrix for the uncertainty and we compare using the full covariance matrix with using only the diagonal. We also compare with using a simplified uncertainty estimate that does not come from the seismic inversion. The results indicate that it is important not to underestimate the noise in seismic data and that having information about the correlation in the error in seismic data can in some cases improve the results.


4D seismic Iterative ensemble smoother History matching Bayesian seismic inversion Uncertainty quantification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aanonsen, S. I., Aavatsmark, I., Barkve, T., Cominelli, A., Gosselin, O., Kolasinski, M., Reme, H.: Effect of scale dependent data correlations in integrated history matching loop combining production data and 4D seismic data. In: SPE Reservoir Simulation Symposium, Houston, 3–5 February 2003. SPE paper 79665Google Scholar
  2. 2.
    Aanonsen, S. I., Naevdal, G., Oliver, D. S., Reynolds, A. C., Vallès, B.: The ensemble Kalman filter in reservoir engineering—a review. SPE J. 14(3), 393–412 (2009)CrossRefGoogle Scholar
  3. 3.
    Bansal, R., Sen, M. K.: Ray-born inversion for fracture parameters. Geophys. J. Int. 180(3), 1274–1288 (2010)CrossRefGoogle Scholar
  4. 4.
    Buland, A., Omre, H.: Bayesian linearized AVO inversion. Geophysics 68(1), 185–198 (2003)CrossRefGoogle Scholar
  5. 5.
    Chen, J., Glinsky, M. E.: Stochastic inversion of seismic pp and ps data for reservoir parameter estimation. Geophysics 79(6), R233–R246 (2014)CrossRefGoogle Scholar
  6. 6.
    Chen, P., Jordan, T. H., Zhao, L.: Full three-dimensional tomography: a comparison between the scattering-integral and adjoint-wavefield methods. Geophys. J. Int. 170(1), 175–181 (2007)CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Oliver, D. S.: Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Comput. Geosci. 17, 689–703 (2013)CrossRefGoogle Scholar
  8. 8.
    Chen, Y., Oliver, D. S.: History matching of the Norne full-field model with an iterative ensemble smoother. SPE Reserv. Eval. Eng. 17(02), 244–256 (2014)CrossRefGoogle Scholar
  9. 9.
    Dadashpour, M., Ciaurri, D. E., Mukerji, T., Kleppe, J., Landro, M.: A derivative-free approach for the estimation of porosity and permeability using time-lapse seismic and production data. J. Geophys. Eng. 7 (4), 351–368 (2010)CrossRefGoogle Scholar
  10. 10.
    Dong, Y., Oliver, D. S.: Quantitative use of 4D seismic data for reservoir description. SPE J. 10(1), 91–99 (2005)CrossRefGoogle Scholar
  11. 11.
    Dong, Y., Gu, Y., Oliver, D. S.: Sequential assimilation of 4D seismic data for reservoir description using the ensemble Kalman filter. J. Pet. Sci. Eng. 53, 83–99 (2006)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Emerick, A., Reynolds, A.: Investigation of the sampling performance of ensemble-based methods with a simple reservoir model. Comput. Geosci. 17(2), 325–350 (2013a)Google Scholar
  14. 14.
    Emerick, A. A.: Estimation of pressure and saturation fields from time-lapse impedance data using the ensemble smoother. J. Geophys. Eng. 11(3) (2014)Google Scholar
  15. 15.
    Emerick, A. A., Reynolds, A. C.: History-matching production and seismic data in a real field case using the ensemble smoother with multiple data assimilation. In: 2013 SPE Reservoir Simulation Symposium, The Woodlands, February 18–20. Society of Petroleum Engineers. SPE 163675-MS (2013b)Google Scholar
  16. 16.
    Emerick, A. A., Reynolds, A. C.: Ensemble smoother with multiple data assimilation. Comput. Geosci. 55, 3–15 (2013c)Google Scholar
  17. 17.
    Emerick, A. A., de Moraes, P. J., Rodrigues, J. R. P.: History matching 4D seismic data with efficient gradient based methods (SPE-107179). In: SPE EUROPEC/EAGE Annual Conference and Exhibition, 11–14 June, London (2007)Google Scholar
  18. 18.
    Fahimuddin, A., Aanonsen, S., Skjervheim, J.-A.: Ensemble based 4d seismic history matching: integration of different levels and types of seismic data (SPE-131453). In: 72nd EAGE Conference & Exhibition (2010a)Google Scholar
  19. 19.
    Fahimuddin, A., Aanonsen, S. I., Skjervheim, J.-A.: 4D seismic history matching of a real field case with EnKF: use of local analysis for model updating. In: SPE Annual Technical Conference and Exhibition, 19–22 September 2010, Florence (2010b)Google Scholar
  20. 20.
    Feng, T., Skjervheim, J., Evensen, G.: Quantitative use of different seismic attributes in reservoir modeling. In: ECMOR XIII-13th European Conference on the Mathematics of Oil Recovery (2012)Google Scholar
  21. 21.
    Grana, D.: Probabilistic approach to rock physics modeling. Geophysics 79(2), D123–D143 (2014)CrossRefGoogle Scholar
  22. 22.
    Grana, D., Mukerji, T.: Bayesian inversion of time-lapse seismic data for the estimation of static reservoir properties and dynamic property changes. Geophys. Prospect. 63(3), 637–655 (2015)CrossRefGoogle Scholar
  23. 23.
    Gu, Y., Oliver, D. S.: An iterative ensemble Kalman filter for multiphase fluid flow data assimilation. SPE J. 12(4), 438–446 (2007)CrossRefGoogle Scholar
  24. 24.
    Haverl, M., Aga, M., Reiso, E.: Integrated workflow for quantitative use of time-lapse seismic data in history matching: a North Sea field case (SPE-94453). In: SPE Europec/EAGE Annual Conference, 13–16 June 2005, Madrid (2005)Google Scholar
  25. 25.
    Haverl, M. C., Skjervheim, J.-A., Landrø, M.: 4D seismic modeling integrated with the ensemble Kalman filter method for history matching of reservoir simulation model. In: 11th European Conference on the Mathematics of Oil Recovery (2008)Google Scholar
  26. 26.
    Iglesias, M.: Iterative regularization for ensemble data assimilation in reservoir models. Comput. Geosci. 19 (1), 177–212 (2015)CrossRefGoogle Scholar
  27. 27.
    Jakobsen, M.: T-matrix approach to seismic forward modelling in the acoustic approximation. Stud. Geophys. Geod. 56, 1–20 (2012)CrossRefGoogle Scholar
  28. 28.
    Jakobsen, M., Ursin, B.: Nonlinear seismic waveform inversion using a born iterative T-matrix method. In: 82nd annual SEG meeting, Las Vegas (2012)Google Scholar
  29. 29.
    Jakobsen, M., Ursin, B.: Full waveform inversion in the frequency domain using direct iterative T-matrix methods. J. Geophys. Eng. 12, 400–418 (2015)CrossRefGoogle Scholar
  30. 30.
    Jakobsen, M., Keers, H., Ruud, B., Psencik, I., Shahraini, A.: Waveform inversion of 4d seismic data using the ray-born approximation in the frequency domain. In: 72nd EAGE meeting, Barcelona (2010)Google Scholar
  31. 31.
    Kirchner, A., Shapiro, S. A.: Fast repeat-modelling of time-lapse seismograms. Geophys. Prospect. 49(5), 557–569 (2001)CrossRefGoogle Scholar
  32. 32.
    Kretz, V., Le Ravalec-Dupin, M., Roggero, F.: An integrated reservoir characterization study matching production data and 4d seismic. SPE Reserv. Eval. Eng. 7(2), 116–122 (2004)CrossRefGoogle Scholar
  33. 33.
    Le Ravalec, M., Tillier, E., Veiga, S. D., Enchery, G., Gervais, V.: Advanced integrated workflows for incorporating both production and 4D seismic-related data into reservoir models. Oil Gas Sci. Technol.—Rev. IFP Energies Nouvelles 67(2), 207–220 (2012)CrossRefGoogle Scholar
  34. 34.
    Leeuwenburgh, O., Arts, R.: Distance parameterization for efficient seismic history matching with the ensemble Kalman filter. Comput. Geosci. 18(3–4), 535–548 (2014)CrossRefGoogle Scholar
  35. 35.
    Leeuwenburgh, O., Brouwer, J., Trani, M.: Ensemble-based conditioning of reservoir models to seismic data. Comput. Geosci. 15(2), 359–378 (2011)CrossRefGoogle Scholar
  36. 36.
    Li, G., Reynolds, A. C.: Iterative ensemble Kalman filters for data assimilation. SPE J. 14(3), 496–505 (2009)CrossRefGoogle Scholar
  37. 37.
    Lorentzen, R. J., Nævdal, G.: An iterative ensemble Kalman filter. IEEE Trans. Autom. Control 56(8), 1990–1995 (2011)CrossRefGoogle Scholar
  38. 38.
    Lorentzen, R. J., Nævdal, G., Shafieirad, A.: Estimating facies fields by use of the ensemble Kalman filter and distance functions-applied to shallow-marine environments. SPE J. 18, 146–158 (2013)CrossRefGoogle Scholar
  39. 39.
    Mavko, G., Mukerji, T., Dvorkin, J.: The rock physics handbook: tools for seismic analysis in porous media. Cambridge University Press, Cambridge (2003)Google Scholar
  40. 40.
    Moser, T. J.: Review of ray-Born forward modeling for migration and diffraction analysis. Stud. Geophys. Geod. 56(2), 411–432 (2012)CrossRefGoogle Scholar
  41. 41.
    Muhumuza, K.: Modelling and inversion of time-lapse seismic waveform data using scattering theory. Master’s thesis. Rijksuniversiteit Groningen (2015)Google Scholar
  42. 42.
    Mukerji, T., Jørstad, A., Avseth, P., Mavko, G., Granli, J. R.: Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: Seismic inversions and statistical rock physics. Geophysics 66(4), 988–1001 (2001)CrossRefGoogle Scholar
  43. 43.
    Nævdal, G., Johnsen, L. M., Aanonsen, S. I., Vefring, E. H.: Reservoir monitoring and continuous model updating using ensemble Kalman filter. SPE J. 10(1), 66–74 (2005)CrossRefGoogle Scholar
  44. 44.
    Oliver, D. S., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15, 185–221 (2010)CrossRefGoogle Scholar
  45. 45.
    Peters, L., Arts, R. J., Brouwer, G. K., Geel, C. R., Cullick, S., Lorentzen, R. J., Chen, Y., Dunlop, K. N. B., Vossepoel, F. C., Xu, R., Sarma, P., Alhutali, A. H., Reynolds, A. C.: Results of the Brugge benchmark study for flooding optimization and history matching. SPE Reserv. Eval. Eng. 13(3), 391–405 (2010)CrossRefGoogle Scholar
  46. 46.
    Remy, N., Boucher, A., Wu, J.: Applied Geostatistics with SGeMS. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  47. 47.
    Roggero, F., Lerat, O., Ding, D. Y., Berthet, P., Bordenave, C., Lefeuvre, F., Perfetti, P.: History matching of production and 4D seismic data: application to the Girassol Field, Offshore Angola. Oil Gas Sci. Technol.—Rev. IFP Energies Nouvelles 67(2), 237–262 (2012)CrossRefGoogle Scholar
  48. 48.
    Shaw, R. K., Sen, M. K.: Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media. Geophys. J. Int. 158(1), 225–238 (2004)CrossRefGoogle Scholar
  49. 49.
    Skjervheim, J., Ruud, B., Aanonsen, S., Evensen, G., Johansen, T.: Using the ensemble Kalman filter with 4D data to estimate properties and lithology of reservoir rocks. In: ECMOR X-10th European Conference on the Mathematics of Oil Recovery (2006)Google Scholar
  50. 50.
    Skjervheim, J.-A., Evensen, G.: An ensemble smoother for assisted history matching. In: SPE Reservoir simulations symposium, The Woodlands, February 21–23. SPE141929-MS (2011)Google Scholar
  51. 51.
    Skjervheim, J.-A., Evensen, G., Aanonsen, S. I., Ruud, B. O., Johansen, T. A.: Incorporating 4D seismic data in reservoir simulation using ensemble Kalman filter. SPE J. 12(3), 282–292 (2007)CrossRefGoogle Scholar
  52. 52.
    Stephen, K. D., Soldo, J., MacBeth, C., Christie, M.: Multiple-model seismic and production history matching: a case study. SPE J. 11(4), 418–430 (2006)CrossRefGoogle Scholar
  53. 53.
    Tarantola, A.: Inverse problem theory and methods for model parameter estimation. SIAM (2005)Google Scholar
  54. 54.
    The MathWorks.
  55. 55.
    Trani, M., Arts, R., Leeuwenburgh, O.: Seismic history matching of fluid fronts using the ensemble Kalman filter. SPE J. 18(1), 159–171 (2013)CrossRefGoogle Scholar
  56. 56.
    Vasco, D. W., Keers, H., Khazanehdari, J., Cooke, A.: Seismic imaging of reservoir flow properties: resolving water influx and reservoir permeability. Geophysics 73(1), O1–O13 (2008)CrossRefGoogle Scholar
  57. 57.
    Wang, Y., Li, G., Reynolds, A. C.: Estimation of depths of fluid contacts and relative permeability curves by history matching using iterative ensemble-Kalman smoothers. SPE J. 15(2), 509–525 (2010)CrossRefGoogle Scholar
  58. 58.
    Zhao, Y., Reynolds, A. C., Li, G.: Generating facies maps by assimilating production data and seismic data with the ensemble Kalman filter, SPE-113990. In: Proceedings of SPE IOR Symposium, Tulsa, April 21–23. (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.International Research Institute of Stavanger (IRIS)/The National IOR Centre of NorwayBergenNorway
  2. 2.Department of Earth ScienceUniversity of BergenBergenNorway

Personalised recommendations