Computational Geosciences

, Volume 20, Issue 5, pp 997–1011

# Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium

Original Paper

## Abstract

We consider an iterative scheme for solving a coupled geomechanics and flow problem in a fractured poroelastic medium. The fractures are treated as possibly non-planar interfaces. Our iterative scheme is an adaptation due to the presence of fractures of a classical fixed stress-splitting scheme. We prove that the iterative scheme is a contraction in an appropriate norm. Moreover, the solution converges to the unique weak solution of the coupled problem.

## Keywords

Fractured porous media flow Iterative coupling Biot model Fixed stress splitting

## References

1. 1.
Alboin, C., Jaffré, J., Roberts, J.E., Serres, C.: Modeling fractures as interfaces for flow and transport in porous media. In: Z. Chen and R. E. Ewing, editors, Fluid flow and transport in porous media: mathematical and numerical treatment, Contemporary mathematics, volume 295, pages 13–24. American Mathematical Society (2002)Google Scholar
2. 2.
Biot, M.A.: Consolidation settlement under a rectangular load distribution. J. Appl. Phys. 12(5), 426–430 (1941)
3. 3.
Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)
4. 4.
Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer-Verlag 3rd edition (2008)Google Scholar
5. 5.
Bukač, M., Yotov, I., Zakerzadeh, R., Zunino, P.: Partitioning strategies for the interaction of a fluid with a poroelastic material based on Nitsche’s coupling approach. Comput. Methods Appl. Mech. Eng. 292, 138–170 (2015)
6. 6.
Castonguay, S.T., Mear, M.E., Dean, R.H., Schmidt, J.H.: Predictions of the growth of multiple interacting hydraulic fractures in three dimensions. Soc. Petrol. Eng. (2013). SPE 166259-MSGoogle Scholar
7. 7.
Chin, L.Y., Raghaven, R., Thomas, L.K.: Fully-coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability. In: 1998 SPE International Conference and Exhibition, Beijing, China Nov, pp 2–6 (1998)Google Scholar
8. 8.
Chin, L.Y., Thomas, L.K., Sylte, J.E., Pierson, R.G.: Iterative coupled analysis of geomechanics and fluid flow for rock compaction in reservoir simulation. Oil and Gas Science and Technology 57(5), 485–497 (2002)
9. 9.
Coussy, O.: A general theory of thermoporoelastoplasticity for saturated porous materials. Transp. Porous Media 4, 281–293 (1989)
10. 10.
Dean, R.H., Schmidt, J.H.: Hydraulic-fracture predictions with a fully coupled geomechanical reservoir simulator. SPE J., 707–714 (2009)Google Scholar
11. 11.
Delshad, M., Hosseini, S.A., Kong, X., Tavakoli, R., Wheeler, M.F.: Modeling and simulation of carbon sequestration at Cranfield incorporating new physical models. Int. J. Greenhouse Gas Control 18, 463–473 (2013)
12. 12.
Fung, L.S.K., Buchanan, L., Wan, R.G.: Coupled geomechanical-thermal simulation for deforming heavy-oil reservoirs. J. Can. Pet. Tech. 33(4) (1994)Google Scholar
13. 13.
Gai, X., Dean, R.H., Wheeler, M.F., Liu, R.: Coupled geomechanical and reservoir modeling on parallel computers. In: The SPE Reservoir Simulation Symposium, Houston, Texas Feb, pp 3–5 (2003)Google Scholar
14. 14.
Galvis, J., Sarkis, M.: Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations. Electron. trans. Numer Anal. 26, 350–384 (2007)Google Scholar
15. 15.
Girault, V., Pencheva, G.V., Wheeler, M.F., Wildey, T.M.: Domain decomposition for poroelasticity and elasticity with DG jumps and mortars. Math. Models Methods Appl. Sci. 21(1), 169–213 (2011)
16. 16.
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1986)
17. 17.
Girault, V., Wheeler, M.F., Ganis, B., Mear, M.E.: A lubrication fracture model in a poro-elastic medium. Math. Models Methods Appl. Sci. 25(4), 587–645 (2015)
18. 18.
Kim, J., Tchelepi, H.A., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: drained and undrained splits. Comput. Methods Appl. Mech. Engrg. 200(23-24), 2094–2116 (2011)
19. 19.
Kim, J., Tchelepi, H.A., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Engrg. 200(13-16), 1591–1606 (2011)
20. 20.
Lewis, R.W., Schrefler, B.A.: the Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edition. Wiley, New York (1998)Google Scholar
21. 21.
Lions, J. -L., Magenes, E.: non-Homogeneous Boundary Value Problems and Applications, vol. I. Springer-Verlag, New York (1972)
22. 22.
Martin, V., Jaffré, J., Roberts, J.E.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)
23. 23.
Mikelić, A., Wheeler, M.F.: Convergence of iterative coupling for coupled flow and mechanics. Comput. Geosci. 17(3), 455–461 (2013)
24. 24.
Mikelić, A., Wheeler, M.F., Wick, T.: A Phase-Field Approach to the Fluid-Filled Fracture Surrounded by a Poro-Elastic Medium ICES Report 13-15, Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin Texas (2013)Google Scholar
25. 25.
Mikelić, A., Wheeler, M.F., Wick, T.: A quasi-static phase-field approach to the fluid-filled fracture. Nonlinearity 28(5), 1371–1399 (2015)
26. 26.
Phillips, P.J., Wheeler, M.F.: A coupling of mixed and continuous Galerkin finite element methods for poroelasticity. I. The continuous in time case. Comput. Geosci. 11(2), 131–144 (2007)
27. 27.
Pop, I.S., Radu, F., Knabner, P.: Mixed finite elements for the Richards’ equation. Linearization procedure. J. Comput. Appl. Math. 168(1-2), 365–373 (2004)
28. 28.
Radu, F.A., Nordbotten, J.M., Pop, I.S., Kumar, K.: A robust linearization scheme for finite volume based discretizations for simulation of two-phase flow in porous media. J. Comput. Appl. Math. 289, 134–141 (2015)
29. 29.
Settari, A., Mourits, F.M.: Coupling of geomechanics and reservoir simulation models. In: Siriwardane and Zema, editors, Comp. Methods and Advances in Geomech., pages 2151–2158, Balkema, Rotterdam (1994)Google Scholar
30. 30.
Showalter, R.E.: Diffusion in poro-elastic media. J. Math. Anal. Appl. 251(1), 310–340 (2000)
31. 31.
Small, J.C., Booker, J.R., Davis, E.H.: Elasto-plastic consolidation of soil. Int. J. Solids Struct. 12(6), 431–448 (1976)
32. 32.
von Terzaghi, K.: Theoretical Soil Mechanics. Wiley, New York (1943)
33. 33.
Wick, T., Singh, G., Wheeler, M.F.: Pressurized fracture propagation using a phase-field approach coupled to a reservoir simulator. In: SPE Hydraulic Fracturing Technology Conference, The Woodlands, Texas. Society of Petroleum Engineers, SPE 168597-MS submitted (2014)Google Scholar

© Springer International Publishing Switzerland 2016

## Authors and Affiliations

• Vivette Girault
• 1
• Kundan Kumar
• 2
• Mary F. Wheeler
• 3
1. 1.Sorbonne Universités, UPMC Univ. Paris 06CNRS, UMR 7598, Laboratoire Jacques-Louis LionsParisFrance
2. 2.Realfagbygget, Mathematics Institute, Allegaten 41University of BergenBergenNorway
3. 3.Center for Subsurface Modeling, The Institute for Computational Engineering Sciences (ICES)The University of Texas at AustinAustinUSA