Skip to main content
Log in

Finite-difference strategy for elastic wave modelling on curved staggered grids

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Waveform modelling is essential for seismic imaging and inversion. Because including more physical characteristics can potentially yield more accurate Earth models, we analyse strategies for elastic seismic wave propagation modelling including topography. We focus on using finite differences on modified staggered grids. Computational grids can be curved to fit the topography using distribution functions. With the chain rule, the elasto-dynamic formulation is adapted to be solved directly on curved staggered grids. The chain-rule approach is computationally less expensive than the tensorial approach for finite differences below the 6th order, but more expensive than the classical approach for flat topography (i.e. rectangular staggered grids). Free-surface conditions are evaluated and implemented according to the stress image method. Non-reflective boundary conditions are simulated via a Convolutional Perfect Matching Layer. This implementation does not generate spurious diffractions when the free-surface topography is not horizontal, as long as the topography is smoothly curved. Optimal results are obtained when the angle between grid lines at the free surface is orthogonal. The chain-rule implementation shows high accuracy when compared to the analytical solution in the case of the Lamb’s problem, Garvin’s problem and elastic interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aki, K., Richards, P.G.: Quantitative seismology. W.H. Freeman & Co (1980)

  2. Appelö, D., Petersson, N.A.: A stable finite difference method for the elastic wave equation on complex geometries with free surfaces. Commun. Comput. Phys. 5(1), 86–107 (2009)

    Google Scholar 

  3. Bérenger, J.P.: A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  Google Scholar 

  4. Berg, P., If, P., Nilsen, P., Skovgaard, O.: Analytical reference solutions: advanced seismic modeling. In: Helbig, K. (ed.) Modeling the Earth for Oil Exploration, pp. 421–427. Pergamon Press (1994)

  5. Bohlen, T., Saenger, E.H.: Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves. Geophysics 71(4), 109–115 (2006)

    Article  Google Scholar 

  6. Brossier, R., Virieux, J., Operto, S.: Parsimonious finite-volume frequency-domain method for 2-D p-SV-wave modelling. Geophys. J. Int. 175, 541–559 (2008)

    Article  Google Scholar 

  7. Chapman, C.H.: Fundamental of seismic waves propagation. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  8. Cohen, G.: Méthodes numériques d’ordre élevé pour les ondes en régime transitoire. INRIA (1994)

  9. Collino, F., Tsogka, C.: Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media. Geophysics 66, 294–307 (2001)

    Article  Google Scholar 

  10. de la Puente, J., Ferrer, M., Hanzich, M., Castillo, J.E., Cela, J.M.: Mimetic seismic wave modelling including topography on deformed staggered grids. Geophysics 79(3), T125–T141 (2014)

    Article  Google Scholar 

  11. Dovgilovich, L., Sofronov, I.: High-accuracy finite-difference schemes for solving elastodynamic problems in curvilinear coordinates within multiblock approach. Appl. Numer. Math. 93, 176–194 (2015)

    Article  Google Scholar 

  12. Dunkin, J.W.: Computation of modal solutions in layered elastic media at high frequencies. Bull. Seismol. Soc. Am. 55, 335–358 (1965)

    Google Scholar 

  13. Garvin, W.: Exact transient solution of buried line source problem. Proc. R. Soc. Lond. 234, 528–541 (1956)

    Article  Google Scholar 

  14. Hestholm, S., Ruud, B.: 2D finite-difference elastic wave modeling including surface topography. Geophys. J. Int. 118(2), 643–670 (1994)

    Article  Google Scholar 

  15. Hestholm, S., Ruud, B.: 3-D finite-difference elastic wave modeling including surface topography. Geophysics 63(2), 613–622 (1998)

    Article  Google Scholar 

  16. Hestholm, S., Ruud, B.: 2D surface topography boundary conditions in seismic wave modelling. Geophys. Prospect. 49, 445–460 (2001)

    Article  Google Scholar 

  17. de Hoop, A.T.: A modification of Cagniard’s method for solving seismic pulse problems. Appl. Sci. Res. B 8, 349–356 (1960)

    Article  Google Scholar 

  18. Kaser, M., Dumbser, M.: An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - I The two-dimensional isotropic case with external source terms. Geophys. J. Int. 166, 855–877 (2006)

    Article  Google Scholar 

  19. Kaser, M., Igel, H.: Numerical simulation of 2D wave propagation on unstructured grids using explicit differential operators. Geophys. Prospect. 49, 607–619 (2001)

    Article  Google Scholar 

  20. Komatitsch, D., Martin, R.: An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation. Geophysics 72(5), 155–167 (2007)

    Article  Google Scholar 

  21. Komatitsch, D., Vilotte, J.P.: The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88(2), 368–392 (1998)

    Google Scholar 

  22. Komatitsch, D., Coutel, F., Mora, P.: Tensorial formulation of the wave equation for interfaces. Geophys. J. Int. 127, 156–168 (1996)

    Article  Google Scholar 

  23. Kozdon, J.E., Dunham, E.M., Nordström, J.: Simulation of dynamic earthquake ruptures in complex geometries using high-order finite difference methods. J. Sci. Comput. 55(1), 92–124 (2013)

    Article  Google Scholar 

  24. Kristek, J., Moczo, P., Archuleta, R.J.: Efficient methods to simulate planar free surface in the 2D 4th-order staggered-grid finite-difference schemes. Stud. Geophys. Geod. 46, 355–381 (2002)

    Article  Google Scholar 

  25. Kristekova, M., Kristek, J., Moczco, P., Day, S.: Misfit criteria for quantitative comparison of seismograms. Bull. Seismol. Soc. Am. 96(5), 1836–1850 (2006)

    Article  Google Scholar 

  26. Lamb, H.: Exact transient solution of buried line source problem. Philos. Trans. R. Soc. Lond. 204, 1–42 (1904)

    Article  Google Scholar 

  27. Levander, A.R.: Fourth-order finite-difference p-SV seismograms. Geophysics 53, 1425–1436 (1988)

    Article  Google Scholar 

  28. Lisitsa, V., Vishnevsky, D.: Lebedev scheme for the numerical simulation of wave propagation in 3D anisotropic elasticity. Geophys. Prospect. 58, 619–635 (2010)

    Article  Google Scholar 

  29. Lisitsa, V., Vishnevsky, D., Tcheverda, V.: Numerical simulation of seismic waves in models with anisotropic formations: coupling Virieux and Lebedev finite difference schemes. Comput. Geosci. 16, 1135–1152 (2012)

    Article  Google Scholar 

  30. Lombard, B., Piraux, J.: Numerical treatment of two-dimensional interfaces for acoustic and elastic waves. J. Comput. Phys. 195, 90–116 (2004)

    Article  Google Scholar 

  31. Lombard, B., Piraux, J., Gélis, C., Virieux, J.: Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves. Geophys. J. Int. 172, 252–261 (2007)

    Article  Google Scholar 

  32. Malvern, L.E.: Introduction to the mechanics of a continuous medium. Prentice-Hall, Series in Engineering of the Physical Sciences, New Jersey (1969)

    Google Scholar 

  33. McConnell, A.J.: Applications of tensor analysis. Dover Publications, USA (1957)

    Google Scholar 

  34. Mittet, R.: Free-surface boundary conditions for elastic staggered-grid modeling schemes. Geophysics 67, 1616–1623 (2002)

    Article  Google Scholar 

  35. Moczo, P., Robertsson, J.O.A., Eisner, L.: The finite-difference time-domain method for modeling of seismic wave propagation Advances in Wave Propagation in Heterogeneous Earth, vol. 48. Academic Press, UK (2007)

    Google Scholar 

  36. Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-time signal processing. Academic Press, New Jersey (1998)

    Google Scholar 

  37. Pérez Solano, C.A., Donno, D., Chauris, H.: Alternative waveform inversion for surface wave analysis in 2-D media. Geophys. J. Int. 198, 1359–1372 (2014)

    Article  Google Scholar 

  38. Pujol, J.: Elastic wave propagation and generation in seismology (2003)

  39. Robertsson, J.: A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography. Geophysics 61, 1921–1934 (1996)

    Article  Google Scholar 

  40. Rojas, O., Otero, B., Castillo, J.E., Day, S.M.: Low dispersive modelling of Rayleigh waves on partly-staggered grids. Comput. Geosci. 18, 29–43 (2014)

    Article  Google Scholar 

  41. Saenger, E.H., Gold, N., Shapiro, S.A.: Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion 31, 77–92 (2000)

    Article  Google Scholar 

  42. Tarrass, I., Giraud, L., Thore, P.: New curvilinear scheme for elastic wave propagation in presence of curved topography. Geophys. Prospect. 59, 889–906 (2011)

    Article  Google Scholar 

  43. Vinokur, M.: Conservation equations of gasdynamics in curvilinear coordinates systems. J. Comput. Phys. 14, 105–125 (1974)

    Article  Google Scholar 

  44. Virieux, J.: P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51, 889–901 (1986)

    Article  Google Scholar 

  45. Virieux, J., Calandra, H., Plessix, R É: A review of the spectral, pseudo-spectral, finite-difference and finite-element modelling techniques for geophysical imaging. Geophys. Prospect. 59, 794–813 (2011)

    Article  Google Scholar 

  46. Xu Y, Xia J, Miller RD: Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach. Geophysics 75(5), SM147–SM153 (2007)

    Google Scholar 

  47. Zhang, J.: Quadrangle-grid velocity-stress finite-difference method for elastic-wave-propagation simulation. Geophys. J. Int. 131, 127–134 (1997)

    Article  Google Scholar 

  48. Zhang, W., Chen, X.: Traction image method for irregular free surface boundaries in finite difference seismic wave simulation. Geophys. J. Int. 167, 337–353 (2006)

    Article  Google Scholar 

  49. Zhang, W., Zhang, Z., Chen, X.: Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids. Geophys. J. Int. 190, 358–378 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Pérez Solano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez Solano, C.A., Donno, D. & Chauris, H. Finite-difference strategy for elastic wave modelling on curved staggered grids. Comput Geosci 20, 245–264 (2016). https://doi.org/10.1007/s10596-016-9561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-016-9561-8

Keywords

Navigation