Advertisement

Computational Geosciences

, Volume 20, Issue 1, pp 35–47 | Cite as

Towards a hierarchical parametrization to address prior uncertainty in ensemble-based data assimilation

  • Alexandre Anozé Emerick
ORIGINAL PAPER

Abstract

Ensemble-based methods are becoming popular assisted history matching techniques with a growing number of field applications. These methods use an ensemble of model realizations, typically constructed by means of geostatistics, to represent the prior uncertainty. The performance of the history matching is very dependent on the quality of the initial ensemble. However, there is a significant level of uncertainty in the parameters used to define the geostatistical model. From a Bayesian viewpoint, the uncertainty in the geostatistical modeling can be represented by a hyper-prior in a hierarchical formulation. This paper presents the first steps towards a general parametrization to address the problem of uncertainty in the prior modeling. The proposed parametrization is inspired in Gaussian mixtures, where the uncertainty in the prior mean and prior covariance is accounted by defining weights for combining multiple Gaussian ensembles, which are estimated during the data assimilation. The parametrization was successfully tested in a simple reservoir problem where the orientation of the major anisotropic direction of the permeability field was unknown.

Keywords

Ensemble-based methods Data assimilation History matching Prior uncertainty Gaussian mixture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aanonsen, S.I., Nævdal, G., Oliver, D.S., Reynolds, A.C., Vallès, B.: Review of ensemble Kalman filter in petroleum engineering. SPE J. 14(3), 393–412 (2009). doi: 10.2118/117274-PA CrossRefGoogle Scholar
  2. 2.
    Anderson, J.L.: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter. Physica D: Nonlinear Phenomena 230(1–2), 99–111 (2007). doi: 10.1016/j.physd.2006.02.011 CrossRefGoogle Scholar
  3. 3.
    Bengtsson, T., Snyder, C., Nychka, D.: Toward a nonlinear ensemble filter for high-dimensional systems. J. Geophys. Res. 108(D24), ARTN 8775 (2003). doi: 10.1029/2002JD002900
  4. 4.
    Bianco, A., Cominelli, A., Dovera, L., Nævdal, G., Vallès, B.: History matching and production forecast uncertainty by means of the ensemble Kalman filter: A real field application. In: Proceedings of the EAGE/EUROPEC Conference and Exhibition. London, number SPE 107161 (2007). doi: 10.2118/107161-MS
  5. 5.
    Chen, Y., Oliver, D.S.: Ensemble-based closed-loop optimization applied to Brugge field. SPE Reserv. Eval. Eng. 13(1), 56–71 (2010). doi: 10.2118/118926-PA CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Oliver, D.S.: Ensemble randomized maximum likelihood method as an iterative ensemble smoother. Math. Geosci. 44(1), 1–26 (2012). doi: 10.1007/s11004-011-9376-z CrossRefGoogle Scholar
  7. 7.
    Chen, Y., Dean, S.O.: Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Comput. Geosci. 17, 689–703 (2013). doi: 10.1007/s10596-013-9351-5 CrossRefGoogle Scholar
  8. 8.
    Chen, Y., Oliver, D.S.: History matching of the Norne full-field model with an iterative ensemble smoother. SPE Reserv. Eval. Eng. 17(2) (2014). doi: 10.2118/164902-PA
  9. 9.
    Cominelli, A., Dovera, L., Vimercati, S., Nævdal, G.: Benchmark study of ensemble Kalman filter methodology: History matching and uncertainty quantification for a deep-water oil reservoir. In: Proceedings of the International Petroleum Technology Conference. Doha, number IPTC 13748 (2009). doi: 10.2523/13748-MS
  10. 10.
    Coutinho, E.J., Emerick, A.A., Li, G., Reynolds, A.C.: Conditioning multi-layered gelogic models to well test and production logging data using the ensemble Kalman filter. In: Proceedings of the SPE Annual Technical Conference and Exhibition. Florence, number SPE 134542 (2010). doi: 10.2118/134542-MS
  11. 11.
    Dovera, L., Rossa, E.D.: Multimodal ensemble Kalman filtering using Gaussian mixture models. Comput. Geosci. 15(2), 307–323 (2011). doi: 10.1007/s10596-010-9205-3 CrossRefGoogle Scholar
  12. 12.
    Elsheikha, A.H., Demyanov, V., Tavakoli, R., Christie, M.A., Wheeler, M.F.: Calibration of channelized subsurface flow models using nested sampling and soft probabilities. Adv. Water Res. 75, 14–30 (2015). doi: 10.1016/j.advwatres.2014.10.006 CrossRefGoogle Scholar
  13. 13.
    Emerick, A.A.: Analysis of the performance of ensemble-based assimilation of production and seismic data. Submited to Journal of Petroleum Science and Engineering (2015)Google Scholar
  14. 14.
    Emerick, A.A., Reynolds, A.C.: History matching a field case using the ensemble Kalman filter with covariance localization. SPE Reserv. Eval. Eng. 14(4), 423–432 (2011). doi: 10.2118/141216-PA CrossRefGoogle Scholar
  15. 15.
    Emerick, A.A., Reynolds, A.C.: Investigation on the sampling performance of ensemble-based methods with a simple reservoir model. Comput. Geosci. 17, 325–350 (2013). doi: 10.1007/s10596-012-9333-z CrossRefGoogle Scholar
  16. 16.
    Emerick, A.A., Reynolds, A.C.: Ensemble smoother with multiple data assimilation. Comput. Geosci. 55, 3–15 (2013). doi: 10.1016/j.cageo.2012.03.011 CrossRefGoogle Scholar
  17. 17.
    Emerick, A.A., Reynolds, A.C.: History matching of production and seismic data for a real field case using the ensemble smoother with multiple data assimilation. In: Proceedings of the SPE Reservoir Simulation Symposium, The Woodlands, number SPE 163675 (2013). doi: 10.2118/163675-MS
  18. 18.
    Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, Berlin (2007)Google Scholar
  19. 19.
    Evensen, G., Hove, J., Meisingset, H.C., Reiso, E., Seim, K.S., Espelid, Ø.: Using the EnKF for assisted history matching of a North Sea reservoir model. In: Proceedings of the SPE Reservoir Simulation Symposium. Houston, number SPE 106184 (2007). doi: 10.2118/106184-MS
  20. 20.
    Everitt, B.S., Hand, D.J.: Finite Mixture Distributions. Springer, Netherlands (1981)CrossRefGoogle Scholar
  21. 21.
    Furrer, R., Bengtsson, T.: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivariate Anal. 98(2), 227–255 (2007). doi: 10.1016/j.jmva.2006.08.003. ISSN 0047-259XCrossRefGoogle Scholar
  22. 22.
    Hanea, R., Evensen, G., Hustoft, L., Ek, T., Chitu, A., Wilschut, F.: Reservoir management under geological uncertainty using fast model update. In: Proceedings of the SPE Reservoir Simulation Symposium. Houston, number SPE 173305 (2015). doi: 10.2118/173305-MS
  23. 23.
    Houtekamer, P.L., Mitchell, H.L.: A sequential ensemble Kalman filter for atmospheric data assimilation. Monthly Weather Rev. 129(1), 123–137 (2001). doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2 CrossRefGoogle Scholar
  24. 24.
    Hu, L.Y.: Gradual deformation and iterative calibration of Gaussian-related stochastic models. Math. Geol. 32(1), 87–108 (2000). doi: 10.1023/A:1007506918588 CrossRefGoogle Scholar
  25. 25.
    Jafarpour, B., Tarrahi, M.: Assessing the performance of the ensemble Kalman filter for subsurface flow data integration under variogram uncertainty. Water Res. Res. 47(W05537) (2011). doi: 10.1029/2010WR009090
  26. 26.
    Le, D.H., Emerick, A.A., Reynolds, A.C.: An adaptive ensemble smoother with multiple data assimilation for assisted history matching. In: Proceedings of the SPE Reservoir Simulation Symposium. Houston, number SPE 173214 (2015). doi: 10.2118/173214-MS
  27. 27.
    Li, G., Han, M., Banerjee, R., Reynolds, A.C.: Integration of well test pressure data into heterogeneous geological reservoir models. SPE Reserv. Eval. Eng. 13(3) (2010). doi: 10.2118/124055-PA
  28. 28.
    Phale, H.A., Oliver, D.S.: Data assimilation using the constrained ensemble Kalman filter. SPE J. 16(2), 331–342 (2011). doi: 10.2118/125101-PA CrossRefGoogle Scholar
  29. 29.
    Remy, N., Boucher, A., Wu, J.: Applied Geostatistics with SGeMS – A User’s Guide (2009)Google Scholar
  30. 30.
    Reynolds, A.C., He, N., Oliver, D.S.: Reducing uncertainty in geostatistical description with well testing pressure data. In: Schatzinger, R.A., Jordan, J.F. (eds.) Reservoir Characterization–Recent Advances, pp. 149–162. American Association of Petroleum Geologists (1999)Google Scholar
  31. 31.
    Reynolds, A.C., Zafari, M., Li, G.: Iterative forms of the ensemble Kalman filter. In: Proceedings of 10th European Conference on the Mathematics of Oil Recovery. Amsterdam (2006). doi: 10.3997/2214-4609.201402496
  32. 32.
    Robert, C.P.: The Bayesian Choice—From decision-theoretic foundations to computational implementation, 2nd edn. Springer (2007)Google Scholar
  33. 33.
    Skjervheim, J.-A., van Lanen, X., Hulme, D., Røine Stenerud, V., Zachariassen, E., Liu, S., Hove, J., Evensen, G.: Integrated workflow for consistent model building from depth conversion to flow simulation—North Sea field case. In: Proceedings of the 74th EAGE Conference and Exhibition incorporating EUROPEC 2012 (2012). doi: 10.3997/2214-4609.20148221
  34. 34.
    Smith, K.W.: Cluster ensemble Kalman filter. Tellus A 59(5), 749–757 (2007). doi: 10.1111/j.1600-0870.2007.00246.x CrossRefGoogle Scholar
  35. 35.
    Tjelmeland, H., Omre, H., Hegstad, B.K.: Sampling from Bayesian models in reservoir characterization. Technical Report Statistics No. 2/1994. Norwegian Institute of Technology, Trondheim, Norway (1994)Google Scholar
  36. 36.
    Zachariassen, E., Skjervheim, J.-A., Vabø, J.G., Lunt, I., Hove, J., Evensen, G.: Integrated work flow for model update using geophysical monitoring data. In: Proceedings of the 73rd EAGE Conference & Exhibition. Vienna (2011). doi: 10.3997/2214-4609.20149329
  37. 37.
    Zhang, Y., Oliver, D.S.: History matching using a hierarchical stochastic model with the ensemble Kalman filter: a field case study. In: Proceedings of the SPE Reservoir Simulation Symposium. The Woodlands, number SPE 118879 (2009). doi: 10.2118/118879-MS
  38. 38.
    Zhang, Y., Oliver, D.S.: Improving the ensemble estimate of the Kalman gain by bootstrap sampling. Math. Geosci. 42, 327–345 (2010). doi: 10.1007/s11004-010-9267-8 CrossRefGoogle Scholar
  39. 39.
    Zhang, Y., Oliver, D.S.: History matching using the ensemble Kalman filter with multiscale parameterization: a field case study. SPE J. 16(2), 307–317 (2011). doi: 10.2118/118879-PA CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Petrobras Research and Development Center—CENPESRio de JaneiroBrazil

Personalised recommendations