Advertisement

Computational Geosciences

, Volume 19, Issue 6, pp 1251–1268 | Cite as

High order discontinuous Galerkin method for simulating miscible flooding in porous media

  • Jizhou Li
  • Beatrice Riviere
ORIGINAL PAPER

Abstract

We present a high-order method for miscible displacement simulation in porous media. The method is based on discontinuous Galerkin discretization with weighted average stabilization technique and flux reconstruction post processing. The mathematical model is decoupled and solved sequentially. We apply domain decomposition and algebraic multigrid preconditioner for the linear system resulting from the high-order discretization. The accuracy and robustness of the method are demonstrated in the convergence study with analytical solutions and heterogeneous porous media, respectively. We also investigate the effect of grid orientation and anisotropic permeability using high-order discontinuous Galerkin method in contrast with cell-centered finite volume method. The study of the parallel implementation shows the scalability and efficiency of the method on parallel architecture. We also verify the simulation result on highly heterogeneous permeability field from the SPE10 model.

Keywords

Porous media flow Miscible displacement High-order method Discontinuous Galerkin Flux reconstruction Algebraic multigrid Domain decomposition Parallel computing Heterogeneous permeability Anisotropy SPE10 model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Todd, M., O’dell, P., Hirasaki, G., et al.: Methods for increased accuracy in numerical reservoir simulators. Soc. Pet. Eng. J. 12(06), 515–530 (1972)CrossRefGoogle Scholar
  2. 2.
    Nikitin, K., Terekhov, K., Vassilevski, Y.: A monotone nonlinear finite volume method for diffusion equations and multiphase flows. Comput. Geosci., 1–14 (2013)Google Scholar
  3. 3.
    Palagi, C. L., Aziz, K.: Use of Voronoi grid in reservoir simulation. SPE Adv. Tech. Ser. 2, 69–77 (1994)CrossRefGoogle Scholar
  4. 4.
    Riviere, B., Wheeler, M.F.: Discontinuous Galerkin methods for flow and transport problems in porous media. Commun. Numer. Methods Eng. 18(1), 63–68 (2002)CrossRefGoogle Scholar
  5. 5.
    Rankin, R., Riviere, B.: A high order method for solving the black-oil problem in porous media. Adv. Water Resour. 78, 126–144 (2015)CrossRefGoogle Scholar
  6. 6.
    Li, J., Riviere, B.: Numerical solutions of the incompressible miscible displacement equations in heterogeneous media. Comput. Methods Appl. Mech. Eng. 292, 107–121 (2015)CrossRefGoogle Scholar
  7. 7.
    Rivière, B., Wheeler, M.: Discontinuous Galerkin methods for flow and transport problems in porous media. Commun. Numer. Methods Eng. 18, 63–68 (2002)CrossRefGoogle Scholar
  8. 8.
    Epshteyn, Y., Rivière, B.B.: Convergence of high order methods for miscible displacement. Int. J. Numer. Anal. Model. 5, 47–63 (2008)Google Scholar
  9. 9.
    Bastian, P., Rivière, B.: Superconvergence and H(div) projection for discontinuous Galerkin methods. Int. J. Numer. Methods Fluids 42(10), 1043–1057 (2003)CrossRefGoogle Scholar
  10. 10.
    Scovazzi, G., Huang, H., Collis, S., Yin, J.: A fully-coupled upwind discontinuous Galerkin method for incompressible porous media flows: High-order computations of viscous fingering instabilities in complex geometry. J. Comput. Phys. 252, 86–108 (2013)CrossRefGoogle Scholar
  11. 11.
    Huang, H., Scovazzi, G.: A high-order, fully coupled, upwind, compact discontinuous Galerkin method for modeling of viscous fingering in compressible porous media. Comput. Methods Appl. Mech. Eng. 263, 169–187 (2013)CrossRefGoogle Scholar
  12. 12.
    Sun, S., Wheeler, M.F.: Discontinuous Galerkin methods for coupled flow and reactive transport problems. Appl. Numer. Math. 52(2), 273–298 (2005)CrossRefGoogle Scholar
  13. 13.
    Bartels, S., Jensen, M., Müller, R.: Discontinuous Galerkin finite element convergence for incompressible miscible displacement problems of low regularity. SIAM J. Numer. Anal. 47(5), 3720–3743 (2009)CrossRefGoogle Scholar
  14. 14.
    Jensen, M., Müller, R.: Stable Crank–Nicolson discretisation for incompressible miscible displacement problems of low regularity. Numerical Mathematics and Advanced Applications, 469–477 (2010)Google Scholar
  15. 15.
    Li, J., Riviere, B., Walkington, N.: Convergence of a high order method in time and space for the miscible displacement equations. ESAIM: Mathematical Modelling and Numerical Analysis 49, 953–976 (2015)CrossRefGoogle Scholar
  16. 16.
    Luo, Y., Feng, M., Xu, Y.: A stabilized mixed discontinuous Galerkin method for the incompressible miscible displacement problem. Boundary Value Problems 2011(1), 1–17 (2011)CrossRefGoogle Scholar
  17. 17.
    Ern, A., Stephansen, A.F., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29(2), 235–256 (2009)CrossRefGoogle Scholar
  18. 18.
    Ern, A., Nicaise, S., Vohralík, M.: An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. Comptes Rendus Mathematique 345(12), 709–712 (2007)CrossRefGoogle Scholar
  19. 19.
    Bastian, P.: Higher order discontinuous Galerkin methods for flow and transport in porous media. Lecture Notes in Computational Science and Engineering 35, 1–22 (2003)CrossRefGoogle Scholar
  20. 20.
    Ern, A., Mozolevski, I., Schuh, L.: Discontinuous Galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Comput. Methods Appl. Mech. Eng. 199(23), 1491–1501 (2010)CrossRefGoogle Scholar
  21. 21.
    Ern, A., Mozolevski, I., Schuh, L.: Accurate velocity reconstruction for discontinuous Galerkin approximations of two-phase porous media flows. Comptes Rendus Mathematique 347(9), 551–554 (2009)CrossRefGoogle Scholar
  22. 22.
    Arbogast, T., Juntunen, M., Pool, J., Wheeler, M.F.: A discontinuous Galerkin method for two-phase flow in a porous medium enforcing H(div) velocity and continuous capillary pressure. Comput. Geosci. 17(6), 1055–1078 (2013)CrossRefGoogle Scholar
  23. 23.
    Bastian, P., Blatt, M., Scheichl, R.: Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems. Numerical Linear Algebra with Applications 19(2), 367–388 (2012)CrossRefGoogle Scholar
  24. 24.
    Blatt, M.: A parallel algebraic multigrid method for elliptic problems with highly discontinuous coefficients, Ph.D. thesis. University of Heidelberg (2010)Google Scholar
  25. 25.
    Dobrev, V.A., Lazarov, R.D., Vassilevski, P.S., Zikatanov, L.T.: Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations. Numerical Linear Algebra with Applications 13, 753–770 (2006)CrossRefGoogle Scholar
  26. 26.
    Van Slingerland, P., Vuik, C.: Fast linear solver for diffusion problems with applications to pressure computation in layered domains. Comput. Geosci. 18(3-4), 343–356 (2014)CrossRefGoogle Scholar
  27. 27.
    Danilov, A., Vassilevski, Y.V.: A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes. Russ. J. Numer. Anal. Math. Model. 24(3), 207–227 (2009)CrossRefGoogle Scholar
  28. 28.
    Cockburn, B., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)Google Scholar
  29. 29.
    Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)CrossRefGoogle Scholar
  30. 30.
    Hoteit, H., Ackerer, P., Mosé, R., Erhel, J., Philippe, B.: New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes. Int. J. Numer. Methods Eng. 61(14), 2566–2593 (2004)CrossRefGoogle Scholar
  31. 31.
    Moissis, D.: Simulation of viscous fingering during miscible displacement in nonuniform porous media, Ph.D. thesis. Rice University (1988)Google Scholar
  32. 32.
    Koval, E.: A method for predicting the performance of unstable miscible displacement in heterogeneous media. Soc. Pet. Eng. J. 3(02), 145–154 (1963)CrossRefGoogle Scholar
  33. 33.
    Bastian, P.: A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 18(5), 779–796 (2014)CrossRefGoogle Scholar
  34. 34.
    Ewing, R.E., Russell, T.F.: Efficient time-stepping methods for miscible displacement problems in porous media. SIAM J. Numer. Anal. 19(1), 1–67 (1982)CrossRefGoogle Scholar
  35. 35.
    Thomée, V.: Galerkin finite element methods for parabolic problems, Vol. 1054. Springer (1984)Google Scholar
  36. 36.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. part I: abstract framework. Computing 82(2-3), 103–119 (2008)CrossRefGoogle Scholar
  37. 37.
    Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. part II: Implementation and tests in DUNE. Computing 82(2-3), 121–138 (2008)CrossRefGoogle Scholar
  38. 38.
    Bastian, P., Heimann, F., Marnach, S.: Generic implementation of finite element methods in the distributed and unified numerics environment (DUNE). Kybernetika 46(2), 294–315 (2010)Google Scholar
  39. 39.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Rice UniversityHoustonUSA

Personalised recommendations