Computational Geosciences

, Volume 19, Issue 5, pp 1047–1062 | Cite as

Reconstruction of spatial data using isometric mapping and multiple-point statistics



Only partial spatial information in studied fields is a ubiquitous problem in the reconstruction of spatial data and is the major cause of uncertainty for reconstructed results. This is not likely to change since there will always be some unsampled volumes in the simulated regions where no direct information is available. Multiple-point statistics (MPS) can be a powerful tool to address this issue because it can extract the features of training images and copy them to the simulated regions using sparse conditional data or even without any conditional data. Because the data from training images are not always linear, previous MPS methods using linear dimensionality reduction are not suitable to deal with nonlinear situation. A new method using MPS and isometric mapping (ISOMAP) that can achieve nonlinear dimensionality reduction is proposed to reconstruct spatial data. The patterns of the training image are classified using a clustering method after the dimensionality is reduced. The simulation of patterns is performed by comparing the current data event and the average of all classified patterns in a class and finding out the one most similar to the current data event. The experiments show that the structural characteristics of reconstructions using the proposed method are similar to those of training images.


Stochastic simulation Dimensionality reduction Pattern Entropy Nonlinear 

Mathematics Subject Classifications (2010)

86A32 94A08 62H11 62M30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boucher, A., Kyriakidis, P.C., Ratcliff, C.C.: Geostatistical solutions for super-resolution land cover mapping. IEEE Trans. Geosci. Remote Sens. 46(1), 272–283 (2008)CrossRefGoogle Scholar
  2. 2.
    Zhang, T., Du, Y., Huang, T., Li, X.: GPU-accelerated 3D reconstruction of porous media using multiple-point statistics. Comput. Geosci. 19, 79–98 (2015)CrossRefGoogle Scholar
  3. 3.
    Okabe, H., Blunt, M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E. 70(066135), 1–10 (2004)Google Scholar
  4. 4.
    Wang, G., Gertner, G.Z., Anderson, A.B.: Spatial-variability-based algorithms for scaling-up spatial data and uncertainties. IEEE Trans. Geosci. Remote Sens. 42(9), 2004–2015 (2004)CrossRefGoogle Scholar
  5. 5.
    Pejman, T., Ardeshir, H., Muhammad, S.: Multiple-point geostatistical modeling based on the cross-correlation functions. Comput. Geosci. 16, 779–797 (2012)CrossRefGoogle Scholar
  6. 6.
    Nunes, R., Almeida, J.A.: Parallelization of sequential Gaussian, indicator and direct simulation algorithms. Comput. Geosci. 36, 1042–1052 (2010)CrossRefGoogle Scholar
  7. 7.
    Babak, O., Manchuk, J.G., Deutsch, C.V.: Accounting for non-exclusivity in sequential indicator simulation of categorical variables. Comput. Geosci. 51, 118–128 (2013)CrossRefGoogle Scholar
  8. 8.
    Matheron, G.: The intrinsic random functions and their applications. Adv. Appl. Probab. 5(3), 439–468 (1973)CrossRefGoogle Scholar
  9. 9.
    Journel, A.G.: Geostatistics for conditional simulation of ore bodies. Econ. Geol. 69(5), 673–687 (1974)CrossRefGoogle Scholar
  10. 10.
    Journel, A., Huijbregts, C.J.: Mining geostatistics. Academic, New York (1978)Google Scholar
  11. 11.
    Goovaerts, P.: Geostatistics for natural resources evaluation. Oxford University Press, New York (1997)Google Scholar
  12. 12.
    Guardiano, F., Srivastava, R.M.: Multivariate geostatistics: beyond bivariate moments. In: Soares, A (ed.) Geostatistics-Troia, pp 133–144. Kluwer: Dordrecht, Holland, 1 (1993)Google Scholar
  13. 13.
    Zhang, T., Switzer, P., Journel, A.: Filter-based classification of training image patterns for spatial simulation. Math. Geosci. 38, 63–80 (2006)Google Scholar
  14. 14.
    Strebelle, S.B.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34(1), 1–21 (2002)CrossRefGoogle Scholar
  15. 15.
    Huang, T., Li, X., Zhang, T., Lu, D.T.: GPU-accelerated direct sampling method for multiple-point statistical simulation. Comput. Geosci. 57, 13–23 (2013)CrossRefGoogle Scholar
  16. 16.
    Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modeling. Math. Geosci. 42, 487–517 (2010)CrossRefGoogle Scholar
  17. 17.
    Jordan, D.W., Smith, P.: Nonlinear ordinary differential equations, 4th. Oxford University Press (2007)Google Scholar
  18. 18.
    Saul, L.K., Roweis, S.T., Singer, Y.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)Google Scholar
  19. 19.
    Orsenigo, C., Vercellis, C.: A comparative study of nonlinear manifold learning methods for cancer microarray data classification. Expert Syst. Appl. 40, 2189–2197 (2013)CrossRefGoogle Scholar
  20. 20.
    Tenenbaum, B.J., Silva, V., Langford, C.J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(22), 2319–2323 (2000)CrossRefGoogle Scholar
  21. 21.
    Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(22), 2323–2326 (2000)CrossRefGoogle Scholar
  22. 22.
    Tran, T.T.: Improving variogram reproduction on dense simulation grids. Comput. Geosci. 20(7-8), 1161–1168 (1994)CrossRefGoogle Scholar
  23. 23.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Techn. J. 27, 379–423 (1948)CrossRefGoogle Scholar
  24. 24.
    Honarkhah, M.: Stochastic simulation of patterns using distance-based pattern modeling. Ph.D. Thesis. Stanford University, Stanford, CA (2011)Google Scholar
  25. 25.
    Zhu, M., Ghodsi, A.: Automatic dimensionality selection from the scree plot via the use of profile likelihood. Comput. Stat. Data Anal. 51, 918–930 (2006)CrossRefGoogle Scholar
  26. 26.
    Hougardy, S.: The Floyd–Warshall algorithm on graphs with negative cycles. Inf. Process. Lett. 110, 279–281 (2010)CrossRefGoogle Scholar
  27. 27.
    Levina, E., Bickel, P.J.: Maximum likelihood estimation of intrinsic dimension. In: Proceedings of Neural Information Processing Systems (NIPS 2005), pp 777–784 (2005)Google Scholar
  28. 28.
    Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimensionality reduction. In: Neural Information Processing Systems (NIPS 2002), pp 705–712. MIT Press (2002)Google Scholar
  29. 29.
    Ester, M., Kriegel, H.P., Sander, J., Xu, X.W.: A density-based algorithm for discovering clusters in large spatial databases. Knowledge Discovery and Data Mining (KDD 1996), pp 226–231. AAAI (1996)Google Scholar
  30. 30.
    Renard, P., Allard, D.: Connectivity metrics for subsurface flow and transport. Adv. Water Resour. 51, 168–196 (2013)CrossRefGoogle Scholar
  31. 31.
    Comunian, A., Renard, P., Straubhaar, J.: 3D multiple-point statistics simulation using 2D training images. Comput. Geosci. 40, 49–65 (2012)CrossRefGoogle Scholar
  32. 32.
    Zhang, T.F.: Filter-based training pattern classification for spatial pattern simulation. Ph.D. Thesis. Stanford University, Stanford, CA (2006)Google Scholar
  33. 33.
    Wu, J.B.: 4D seismic and multiple-point pattern data integration using geostatistics. Ph.D. Thesis, Stanford University, Stanford, CA (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.College of Computer Science and TechnologyShanghai University of Electric PowerShanghaiChina
  2. 2.School of Computer and InformationShanghai Second Polytechnic UniversityShanghaiChina
  3. 3.Department of Modern MechanicsUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations