Skip to main content
Log in

A general framework for the simulation of geochemical compaction

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We propose a mathematical model and a numerical scheme to describe compaction processes in a sedimentary rock layer undergoing both mechanical and geochemical processes. We simulate the sedimentation process by providing a sedimentation rate, and we account for chemical reactions using simplified kinetics describing either the conversion of a solid matrix into a fluid, as in the case of kerogen degradation into oil, or the precipitation of a mineral solute on the solid matrix of the rock. We use a Lagrangian description that enables to recast the equations in a fixed frame of reference. We present an iterative splitting scheme that allows solving the set of governing equations efficiently in a sequential manner. We assess the performances of this strategy in terms of convergence and mass conservation. Some numerical experiments show the capability of the scheme to treat two test cases, one concerning the precipitation of a mineral, the other the dissolution of kerogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Athy, L.F.: Density, porosity, and compaction of sedimentary rocks. AAPG Bull. 14(1), 1–24 (1930)

    Google Scholar 

  2. Biot, M., Willis, D.: The elastic coefficients of the theory of consolidation. ASME Journal of Applied Mechanics pp. 594–601 (1957)

  3. Bouillard, N., Eymard, R., Herbin, R., Montarnal, P.: Diffusion with dissolution and precipitation in a porous medium: mathematical analysis and numerical approximation of a simplified model. ESAIM: Math. Model Numer. Anal. 41, 975–1000 (2007)

    Article  Google Scholar 

  4. Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Springer, New York (2011)

    Google Scholar 

  5. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer, New York (2012)

    Google Scholar 

  6. Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Civil Engineering Dept., Colorado State Univ., Fort Collins, CO (1964)

  7. Chavent, G., Jaffré, G.: Mathematical models and finite elements for reservoir simulation. Elsevier Science Publishers B.V (1986)

  8. Chen, Z.: Finite element methods and their applications. Springer, New York (2005)

    Google Scholar 

  9. Chen, Z., Ewing, R.E., Lu, H., Lyons, S.L., Maliassov, S., Ray, M.B., Sun, T.: Integrated two-dimensional modeling of fluid flow and compaction in a sedimentary basin. Comput. Geosci. 6, 545–564 (2002)

    Article  Google Scholar 

  10. Coussy, O.: Poromechanics. John Wiley & Sons (2004)

  11. Formaggia, L., Guadagnini, A., Imperiali, I., Lever, V., Porta, G., Riva, M., Scotti, A., Tamellini, L.: Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model. Comput. Geosci. 17, 25–42 (2013)

    Article  Google Scholar 

  12. Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7, 105–131 (1999)

    Google Scholar 

  13. Fowler, A., Yang, X.s.: Fast and slow compaction in sedimentary basins. SIAM J. Appl. Math. 59(1), 365–385 (1998)

    Article  Google Scholar 

  14. Fowler, A., Yang, X.s.: Pressure solution and viscous compaction in sedimentary basins. J. Geophys. Res. 104(B6), 12,989–12,997 (1999)

    Article  Google Scholar 

  15. Fowler, A., Yang, X.S.: Dissolution/precipitation mechanisms for diagenesis in sedimentary basins. J. Geophys. Res. Solid Earth (1978–2012) 108(B10) (2003)

  16. Franca, L., Frey, S.L., Hughes, T.J.: Stabilized finite element methods: I. application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 95(2), 253–276 (1992)

    Article  Google Scholar 

  17. Ismail-Zadeh, A., Krupskii, D.P.: Extrusion and gravity current of a fluid: Implications for salt tectonics. Physics of the Solid Earth 42, 999–1006 (2006)

    Article  Google Scholar 

  18. Lander, R.H., Walderhaug, O.: Predicting porosity through simulating sandstone compaction and quartz cementation. AAPG bull. 83(3), 433–449 (1999)

    Google Scholar 

  19. Longoni, M., Malossi, A.C.I., Quarteroni, A., Villa, A., Ruffo, P.: An ALE-based numerical technique for modeling sedimentary basin evolution featuring layer deformations and faults. J. Comput. Phys. 230, 3230–3248 (2011)

    Article  Google Scholar 

  20. Nedjar, B.: Formulation of a nonlinear porosity law for fully saturated porous media at finite strains. Journal of the Mechanics and Physics of Solids 61(2), 537–556 (2013)

    Article  Google Scholar 

  21. Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36, 9–15 (1971)

    Article  Google Scholar 

  22. Pang, X., Jiang, Z., Zuo, S., Lerche, I.: Dynamics of hydrocarbon expulsion from shale source rocks. Energy, Exploration & Exploitation 23(5), 333–355 (2005)

    Article  Google Scholar 

  23. Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations. Springer, Berlin (2008)

    Google Scholar 

  24. Scotti, A.: A numerical model for generation, retention and expulsion of hydrocarbons from source rock. Ph.D. thesis, Politecnico di Milano (2010)

  25. Suetnova, E.: Vasseur, G.: 1-D modelling rock compaction in sedimentary basins using a visco-elastic rheology. Earth Planet. Sci. Lett. 178, 373–383 (2000)

    Article  Google Scholar 

  26. Vandenbroucke, M.: Kerogen: from types to models of chemical structure. Oil & Gas Sci. Technol. 58(2), 243–269 (2003)

    Article  Google Scholar 

  27. Wangen, M.: Vertical migration of hydrocarbons modelled with fractional flow theory. Geophys. J. Int. 115, 109–131 (1993)

    Article  Google Scholar 

  28. Wangen, M.: Two-phase oil migration in compacting sedimentary basins modelled by the finite element method. Int. J. Numer. Anal. Methods Geomech. 21, 91–120 (1997)

    Article  Google Scholar 

  29. Yang, X.S.: Nonlinear viscoelastic compaction in sedimentary basins. Nonlinear Process. Geophys. 7, 1–7 (2000)

    Article  Google Scholar 

  30. Yang, X.S.: A unified approach to mechanical compaction, pressure solution, mineral reactions and the temperature distribution in hydrocarbon basins. Elsevier Tectonophysics 330, 141–151 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianca Giovanardi.

Additional information

MOX Politecnico di Milano - Dipartimento di Matematica, Website: http://mox.polimi.it; E-mail: lab-mox@polimi.it

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giovanardi, B., Scotti, A., Formaggia, L. et al. A general framework for the simulation of geochemical compaction. Comput Geosci 19, 1027–1046 (2015). https://doi.org/10.1007/s10596-015-9518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9518-3

Keywords

Mathematics Subject Classification (2010)

Navigation