Advertisement

Computational Geosciences

, Volume 19, Issue 5, pp 1027–1046 | Cite as

A general framework for the simulation of geochemical compaction

  • Bianca Giovanardi
  • Anna Scotti
  • Luca Formaggia
  • Paolo Ruffo
ORIGINAL PAPER

Abstract

We propose a mathematical model and a numerical scheme to describe compaction processes in a sedimentary rock layer undergoing both mechanical and geochemical processes. We simulate the sedimentation process by providing a sedimentation rate, and we account for chemical reactions using simplified kinetics describing either the conversion of a solid matrix into a fluid, as in the case of kerogen degradation into oil, or the precipitation of a mineral solute on the solid matrix of the rock. We use a Lagrangian description that enables to recast the equations in a fixed frame of reference. We present an iterative splitting scheme that allows solving the set of governing equations efficiently in a sequential manner. We assess the performances of this strategy in terms of convergence and mass conservation. Some numerical experiments show the capability of the scheme to treat two test cases, one concerning the precipitation of a mineral, the other the dissolution of kerogen.

Keywords

Diagenesis Secondary porosity Compaction processes Splitting schemes 

Mathematics Subject Classification (2010)

76S05 65N30 76V05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Athy, L.F.: Density, porosity, and compaction of sedimentary rocks. AAPG Bull. 14(1), 1–24 (1930)Google Scholar
  2. 2.
    Biot, M., Willis, D.: The elastic coefficients of the theory of consolidation. ASME Journal of Applied Mechanics pp. 594–601 (1957)Google Scholar
  3. 3.
    Bouillard, N., Eymard, R., Herbin, R., Montarnal, P.: Diffusion with dissolution and precipitation in a porous medium: mathematical analysis and numerical approximation of a simplified model. ESAIM: Math. Model Numer. Anal. 41, 975–1000 (2007)CrossRefGoogle Scholar
  4. 4.
    Brezis, H.: Functional analysis, Sobolev spaces and partial differential equations. Springer, New York (2011)Google Scholar
  5. 5.
    Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer, New York (2012)Google Scholar
  6. 6.
    Brooks, R.H., Corey, A.T.: Hydraulic properties of porous media. Civil Engineering Dept., Colorado State Univ., Fort Collins, CO (1964)Google Scholar
  7. 7.
    Chavent, G., Jaffré, G.: Mathematical models and finite elements for reservoir simulation. Elsevier Science Publishers B.V (1986)Google Scholar
  8. 8.
    Chen, Z.: Finite element methods and their applications. Springer, New York (2005)Google Scholar
  9. 9.
    Chen, Z., Ewing, R.E., Lu, H., Lyons, S.L., Maliassov, S., Ray, M.B., Sun, T.: Integrated two-dimensional modeling of fluid flow and compaction in a sedimentary basin. Comput. Geosci. 6, 545–564 (2002)CrossRefGoogle Scholar
  10. 10.
    Coussy, O.: Poromechanics. John Wiley & Sons (2004)Google Scholar
  11. 11.
    Formaggia, L., Guadagnini, A., Imperiali, I., Lever, V., Porta, G., Riva, M., Scotti, A., Tamellini, L.: Global sensitivity analysis through polynomial chaos expansion of a basin-scale geochemical compaction model. Comput. Geosci. 17, 25–42 (2013)CrossRefGoogle Scholar
  12. 12.
    Formaggia, L., Nobile, F.: A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7, 105–131 (1999)Google Scholar
  13. 13.
    Fowler, A., Yang, X.s.: Fast and slow compaction in sedimentary basins. SIAM J. Appl. Math. 59(1), 365–385 (1998)CrossRefGoogle Scholar
  14. 14.
    Fowler, A., Yang, X.s.: Pressure solution and viscous compaction in sedimentary basins. J. Geophys. Res. 104(B6), 12,989–12,997 (1999)CrossRefGoogle Scholar
  15. 15.
    Fowler, A., Yang, X.S.: Dissolution/precipitation mechanisms for diagenesis in sedimentary basins. J. Geophys. Res. Solid Earth (1978–2012) 108(B10) (2003)Google Scholar
  16. 16.
    Franca, L., Frey, S.L., Hughes, T.J.: Stabilized finite element methods: I. application to the advective-diffusive model. Comput. Methods Appl. Mech. Eng. 95(2), 253–276 (1992)CrossRefGoogle Scholar
  17. 17.
    Ismail-Zadeh, A., Krupskii, D.P.: Extrusion and gravity current of a fluid: Implications for salt tectonics. Physics of the Solid Earth 42, 999–1006 (2006)CrossRefGoogle Scholar
  18. 18.
    Lander, R.H., Walderhaug, O.: Predicting porosity through simulating sandstone compaction and quartz cementation. AAPG bull. 83(3), 433–449 (1999)Google Scholar
  19. 19.
    Longoni, M., Malossi, A.C.I., Quarteroni, A., Villa, A., Ruffo, P.: An ALE-based numerical technique for modeling sedimentary basin evolution featuring layer deformations and faults. J. Comput. Phys. 230, 3230–3248 (2011)CrossRefGoogle Scholar
  20. 20.
    Nedjar, B.: Formulation of a nonlinear porosity law for fully saturated porous media at finite strains. Journal of the Mechanics and Physics of Solids 61(2), 537–556 (2013)CrossRefGoogle Scholar
  21. 21.
    Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 36, 9–15 (1971)CrossRefGoogle Scholar
  22. 22.
    Pang, X., Jiang, Z., Zuo, S., Lerche, I.: Dynamics of hydrocarbon expulsion from shale source rocks. Energy, Exploration & Exploitation 23(5), 333–355 (2005)CrossRefGoogle Scholar
  23. 23.
    Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations. Springer, Berlin (2008)Google Scholar
  24. 24.
    Scotti, A.: A numerical model for generation, retention and expulsion of hydrocarbons from source rock. Ph.D. thesis, Politecnico di Milano (2010)Google Scholar
  25. 25.
    Suetnova, E.: Vasseur, G.: 1-D modelling rock compaction in sedimentary basins using a visco-elastic rheology. Earth Planet. Sci. Lett. 178, 373–383 (2000)CrossRefGoogle Scholar
  26. 26.
    Vandenbroucke, M.: Kerogen: from types to models of chemical structure. Oil & Gas Sci. Technol. 58(2), 243–269 (2003)CrossRefGoogle Scholar
  27. 27.
    Wangen, M.: Vertical migration of hydrocarbons modelled with fractional flow theory. Geophys. J. Int. 115, 109–131 (1993)CrossRefGoogle Scholar
  28. 28.
    Wangen, M.: Two-phase oil migration in compacting sedimentary basins modelled by the finite element method. Int. J. Numer. Anal. Methods Geomech. 21, 91–120 (1997)CrossRefGoogle Scholar
  29. 29.
    Yang, X.S.: Nonlinear viscoelastic compaction in sedimentary basins. Nonlinear Process. Geophys. 7, 1–7 (2000)CrossRefGoogle Scholar
  30. 30.
    Yang, X.S.: A unified approach to mechanical compaction, pressure solution, mineral reactions and the temperature distribution in hydrocarbon basins. Elsevier Tectonophysics 330, 141–151 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsPolitecnico di MilanoMilanoItaly
  2. 2.Exploration, RIGE DepartmentEni S.p.A.San Donato MilaneseItaly

Personalised recommendations