Computational Geosciences

, Volume 19, Issue 4, pp 951–963 | Cite as

Large deformation failure analysis of the soil slope based on the material point method



The failure analysis of the soil slope is a very important topic in the field of geomechanics. Being a fully Lagrangian particle method, the material point method (MPM) has distinct advantages in solving the extremely large deformation problem. For both cohesive and non-cohesive soil slopes, the large deformation failure problems are analyzed using MPM and the Drucker-Prager constitutive model. For verification of the numerical method, the comparison between MPM and analytical solutions of the dam break problem is presented. Moreover, the numerical results by MPM are compared with the experimental results for the collapse of the aluminum-bar assemblage. Simulations reveal the cohesive soil slope under gravity has a shear band failure mode. Computational results show the reposed angle of non-cohesive soil slope is less than the internal friction angle, and the reason for this phenomenon is presented. The purpose of this study is to give a further understanding of the slope failure in different soil types and provide a computational tool for the failure analysis of soil slopes.


Material point method Soil slope Failure analysis Reposed angle 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duncan, J.M.: State of the art: limit equilibrium and finite element analysis of slopes. J. Geotech. Eng. 122, 577–596 (1996)CrossRefGoogle Scholar
  2. 2.
    Alkasawneh, W., Malkawi, A.I.H., Nusairat, J.H., Albataineh, N.: A comparative study of various commercially available programs in slope stability analysis. Comput. Geotech. 35, 428–435 (2008)CrossRefGoogle Scholar
  3. 3.
    Bui, H.H., Fukagawa, R., Sako, K., Ohno, S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int. J. Numer. Anal. Methods Geomech. 32, 1537–1570 (2008)CrossRefGoogle Scholar
  4. 4.
    López, Y.R., Roose, D., Morfa, C.R.: Dynamic particle refinement in SPH: application to free surface flow and non-cohesive soil simulations. Comput. Mech. 51, 731–741 (2013)CrossRefGoogle Scholar
  5. 5.
    Zhang, J.F., Zhang, W.P., Zheng, Y.: A meshfree method and its applications to elasto-plastic problems. Journal of Zhejiang University SCIENCE 6A, 148–154 (2005)CrossRefGoogle Scholar
  6. 6.
    Wang, D.D., Li, Z.Y., Li, L., Wu, Y.C.: Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium. Sci. China Technol. Sci. 54, 573–580 (2011)CrossRefGoogle Scholar
  7. 7.
    Li, S.F., Liu, W.K.: Meshfree and particle methods and their applications. Appl. Mech. Rev. 55, 1–34 (2002)CrossRefGoogle Scholar
  8. 8.
    Valentino, R., Barla, G., Montrasio, L.: Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech. Rock. Eng. 41, 153–177 (2008)CrossRefGoogle Scholar
  9. 9.
    Utili, S., Nova, R.: DEM analysis of bonded granular geomaterials. Int. J. Numer. Anal. Methods Geomech. 32, 1997–2031 (2008)CrossRefGoogle Scholar
  10. 10.
    Jiang, M., Murakami, A.: Distinct element method analyses of idealized bonded-granulate cut slope. Granul. Matter 14, 393–410 (2012)CrossRefGoogle Scholar
  11. 11.
    Wu, J.H.: Seismic landslide simulations in discontinuous deformation analysis. Comput. Geotech. 37, 594–601 (2010)CrossRefGoogle Scholar
  12. 12.
    Hwang, J.Y., Ohnishi, Y., Wu, J.H.: Numerical analysis of discontinuous rock masses using three-dimensional discontinuous deformation analysis (3D DDA). KSCE J. Civ. Eng. 8, 491–496 (2004)CrossRefGoogle Scholar
  13. 13.
    Doolinn, D.M.: Unified displacement boundary constraint formulation for discontinuous deformation analysis (DDA). Int. J. Numer. Anal. Methods Geomech. 29, 1199–1207 (2005)CrossRefGoogle Scholar
  14. 14.
    Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118, 179–196 (1994)CrossRefGoogle Scholar
  15. 15.
    Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236–252 (1995)CrossRefGoogle Scholar
  16. 16.
    Wieckowski, Z., Youn, S.K, Yeon, J.H.: A particle-in-cell solution to the silo discharging problem. Int. J. Numer. Methods Eng. 45, 1203–1225 (1999)CrossRefGoogle Scholar
  17. 17.
    Wieckowski, Z.: The material point method in large strain engineering problems. Comput. Methods Appl. Mech. Eng. 193, 4417–4438 (2004)CrossRefGoogle Scholar
  18. 18.
    Bardenhagen, S.G., Brackbill, J.U., Sulsky, D.: The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 187, 529–541 (2000)CrossRefGoogle Scholar
  19. 19.
    Coetzee, C.J., Basson, A.H., Vermeer, P.A.: Discrete and continuum modelling of excavator bucket filling. J. Terrramech. 44, 177–186 (2007)CrossRefGoogle Scholar
  20. 20.
    Coetzee, C.J., Vermeer, P.A., Basson, A.H.: The modeling of anchors using the material point method. Int. J. Numer. Anal. Methods Geomech. 29, 879–895 (2005)CrossRefGoogle Scholar
  21. 21.
    Zhang, H.W., Wang, K.P., Chen, Z.: Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies. Comput. Methods Appl. Mech. Eng. 198, 1456–1472 (2009)CrossRefGoogle Scholar
  22. 22.
    Andersen, S., Andersen, L.: Modelling of landslides with the material-point method. Comput. Geosci. 14, 137–147 (2010)CrossRefGoogle Scholar
  23. 23.
    Beuth, L., Wieckowski, Z., Vermeer, P.A.: Solution of quasi-static large-strain problems by the material point method. Int. J. Numer. Anal. Methods Geomech. 35, 1451–1465 (2011)Google Scholar
  24. 24.
    Nairn, J.A.: Material point method calculations with explicit cracks. CMES-Comput. Modeling in Eng. Sci. 4, 649–663 (2003)Google Scholar
  25. 25.
    Huang, P., Zhang, X., Ma, S., Huang, X.: Contact algorithms for the material point method in impact and penetration simulation. Int. J. Numer. Methods Eng. 85, 498–517 (2011)CrossRefGoogle Scholar
  26. 26.
    Itasca Consulting Group, Inc.: FLAC-Fast Lagrangian Analysis of Continua theory and background (Version 5.0). Itasca Consulting Group, Inc, Minneapolis (2005)Google Scholar
  27. 27.
    Chen, W.F., Mizuno, E.: Nonlinear analysis in soil mechanics: theory and implementation. Elsevier Science Publishers, Amsterdam (1990)Google Scholar
  28. 28.
    Commend, S., Zimmermann, T.: Object-oriented nonlinear finite element programming: a primer. Adv. Eng. Softw. 32, 611–628 (2001)CrossRefGoogle Scholar
  29. 29.
    Bui, H.H.: Lagrangian mesh-free particle method (SPH) for large deformation and post-failure of geomaterial using elasto-plastic constitutive models. Ph. D. thesis, Ritsumeikan University, Japan (2007)Google Scholar
  30. 30.
    Stoker, J.J: Water waves: the mathematical theory with applications. John Wiley & Sons, Inc., New York (1992)CrossRefGoogle Scholar
  31. 31.
    Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 214–226 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institute of Systems EngineeringChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations