Advertisement

Computational Geosciences

, Volume 19, Issue 3, pp 551–567 | Cite as

A uranium bioremediation reactive transport benchmark

  • Steven B. Yabusaki
  • Sevinç S. Şengör
  • Yilin Fang
ORIGINAL PAPER

Abstract

A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailing site in Rifle, CO, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, and microbially mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introduces acetate and bromide through the upgradient boundary in 14- and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron-accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions as well as aqueous and surface complexation reactions for UO\(_{2}^{2+}\), Fe2+, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity, and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.

Keywords

Reactive transport modeling Bioremediation Uranium Benchmark 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    Anderson, R.T., Vrionis, H.A., Ortiz-Bernad, I., Resch, C.T., Long, P.E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D.R., Peacock, A., White, D.C., Lowe, M., Lovley, D.R.: Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 69(10), 5884–5891 (2003). doi: 10.1128/Aem.69.10.5884-5891.2003 CrossRefGoogle Scholar
  2. 2.
    Vrionis, H.A., Anderson, R.T., Ortiz-Bernad, I., O’Neill, K.R., Resch, C.T., Peacock, A.D., Dayvault, R., White, D.C., Long, P.E., Lovley, D.R.: Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71(10), 6308–6318 (2005). doi: 10.1128/Aem.71.10.6308-6318.2005 CrossRefGoogle Scholar
  3. 3.
    Williams, K.H., Long, P.E., Davis, J.A., Wilkins, M.J., N’Guessan, A.L., Steefel, C.I., Yang, L., Newcomer, D., Spane, F.A., Kerkhof, L.J., McGuinness, L., Dayvault, R., Lovley, D.R.: Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater. Geomicrobiol. J. 28(5-6), 519–539 (2011). doi: 10.1080/01490451.2010.520074 CrossRefGoogle Scholar
  4. 4.
    Gu, B.H., Wu, W.M., Ginder-Vogel, M.A., Yan, H., Fields, M.W., Zhou, J., Fendorf, S., Criddle, C.S., Jardine, P.M.: Bioreduction of uranium in a contaminated soil column. Environ. Sci. Technol. 39(13), 4841–4847 (2005)CrossRefGoogle Scholar
  5. 5.
    Lovley, D.R., Phillips, E.J.P.: Bioremediation of uranium contamination with enzymatic uranium reduction. Environ. Sci. Technol. 26(11), 2228–2234 (1992)CrossRefGoogle Scholar
  6. 6.
    Luo, W.S., Wu, W.M., Yan, T.F., Criddle, C.S., Jardine, P.M., Zhou, J.Z., Gu, B.H.: Influence of bicarbonate, sulfate, and electron donors on biological reduction of uranium and microbial community composition. Appl. Microbiol. Biotechnol. 77(3), 713–721 (2007). doi: 10.1007/s00253-007-1183-6 CrossRefGoogle Scholar
  7. 7.
    Yabusaki, S.B., Fang, Y., Williams, K.H., Murray, C.J., Ward, A.L., Dayvault, R.D., Waichler, S.R., Newcomer, D.R., Spane, F.A., Long, P.E.: Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment. J. Contam. Hydrol. 126(3-4), 271–290 (2011). doi: 10.1016/j.jconhyd.2011.09.002 CrossRefGoogle Scholar
  8. 8.
    Fang, Y., Yabusaki, S.B., Morrison, S.J., Amonette, J.P., Long, P.E.: Multicomponent reactive transport modeling of uranium bioremediation field experiments. Geochimica. Et Cosmochimica Acta. 73(20), 6029–6051 (2009)CrossRefGoogle Scholar
  9. 9.
    Li, L., Steefel, C.I., Kowalsky, M.B., Englert, A., Hubbard, S.S.: Effects of physical and geochemical heterogeneities on mineral transformation and biomass accumulation during biostimulation experiments at Rifle, Colorado. J. Contam. Hydrol. 112(1-4), 45–63 (2010). doi: 10.1016/j.jconhyd.2009.10.006 CrossRefGoogle Scholar
  10. 10.
    Li, L., Steefel, C.I., Williams, K.H., Wilkins, M.J., Hubbard, S.S.: Mineral transformation and biomass accumulation associated with uranium bioremediation at Rifle, Colorado. Environ. Sci. Technol. 43(14), 5429–5435 (2009). doi: 10.1021/Es900016v CrossRefGoogle Scholar
  11. 11.
    Yabusaki, S.B., Fang, Y., Long, P.E., Resch, C.T., Peacock, A.D., Komlos, J., Jaffe, P.R., Morrison, S.J., Dayvault, R.D., White, D.C., Anderson, R.T.: Uranium removal from groundwater via in situ biostimulation: field-scale modeling of transport and biological processes. J. Contam. Hydrol. 93(1-4), 216–235 (2007). doi: 10.1016/j.jconhyd.2007.02.005 CrossRefGoogle Scholar
  12. 12.
    Yeh, G.T., Fang, Y.L., Zhang, F., Sun, J.T., Li, Y., Li, M.H., Siegel, M.D.: Numerical modeling of coupled fluid flow and thermal and reactive biogeochemical transport in porous and fractured media. Computat. Geosci. 14(1), 149–170 (2010). doi: 10.1007/s10596-009-9140-3 CrossRefGoogle Scholar
  13. 13.
    Prommer, H., Barry, D.A., Zheng, C.: MODFLOW/MT3DMS-based reactive multicomponent transport modeling. Ground Water 41(2), 247–257 (2003). doi: 10.1111/j.1745-6584.2003.tb02588.x CrossRefGoogle Scholar
  14. 14.
    Zheng, C., Wang, P.P.: MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; documentation and user’s guide. In., vol. Contract Report SERDP-99-1. U.S. Army Engineer Research and Development Center, Vicksburg, MS (1999)Google Scholar
  15. 15.
    Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In., vol. Water-Resources Investigations Report 99-4259. U.S. Geological Survey, Denver, CO (1999)Google Scholar
  16. 16.
    Steefel, C.I., Arora, B., Appelo, C.A.J., Hammond, G., Jacques, D., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meussen, H., Molins, S., Parkhurst, D.L., Shao, H., Simunek, J., Van der Lee, J., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface environmental simulation. Computat Geosci. (submitted) (2014)Google Scholar
  17. 17.
    Liger, E., Charlet, L., Van Cappellen, P.: Surface catalysis of uranium(VI) reduction by iron(II). Geochimica. Et Cosmochimica Acta. 63(19-20), 2939–2955 (1999)CrossRefGoogle Scholar
  18. 18.
    Davis, J.A., Meece, D.E., Kohler, M., Curtis, G.P.: Approaches to surface complexation modeling of uranium(VI) adsorption on aquifer sediments. Geochimica. Et Cosmochimica. Acta. 68(18), 3621–3641 (2004). doi: 10.1016/j.gca.2004.03.003 CrossRefGoogle Scholar
  19. 19.
    Hunter, K.S., Wang, Y.F., Van Cappellen, P.: Kinetic modeling of microbially-driven redox chemistry of subsurface environments: coupling transport, microbial metabolism and geochemistry. J. Hydrol. 209(1-4), 53–80 (1998)CrossRefGoogle Scholar
  20. 20.
    Brooks, S.C., Fredrickson, J.K., Carroll, S.L., Kennedy, D.W., Zachara, J.M., Plymale, A.E., Kelly, S.D., Kemner, K.M., Fendorf, S.: Inhibition of bacterial U(VI) reduction by calcium. Environ. Sci. Technol. 37(9), 1850–1858 (2003). doi: 10.1021/Es0210042 CrossRefGoogle Scholar
  21. 21.
    Barlett, M., Zhuang, K., Mahadevan, R., Lovley, D.: Integrative analysis of Geobacter spp. and sulfate-reducing bacteria during uranium bioremediation. Biogeosciences 9(3), 1033–1040 (2012). doi: 10.5194/bg-9-1033-2012 CrossRefGoogle Scholar
  22. 22.
    Komlos, J., Peacock, A., Kukkadapu, R.K., Jaffe, P.R.: Long-term dynamics of uranium reduction/reoxidation under low sulfate conditions. Geochimica. Et. Cosmochimica. Acta. 72(15), 3603–3615 (2008). doi: 10.1016/j.gca.2008.05.040 CrossRefGoogle Scholar

Copyright information

© © Springer International Publishing Switzerland 2015 (outside the USA) 2015 2015

Authors and Affiliations

  • Steven B. Yabusaki
    • 1
  • Sevinç S. Şengör
    • 2
  • Yilin Fang
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.Southern Methodist UniversityDallasUSA

Personalised recommendations