Computational Geosciences

, Volume 19, Issue 3, pp 585–597 | Cite as

A benchmark for multi-rate surface complexation and 1D dual-domain multi-component reactive transport of U(VI)

  • Janek Greskowiak
  • Jack Gwo
  • Diederik Jacques
  • Jun Yin
  • K. Ulrich Mayer


Nonequilibrium surface complexation reactions have been found to substantially affect U(VI) transport in natural porous media both in laboratory and field scale experiments. Nonequilibrium sorption behavior occurs on multiple time scales and is a result of diffusion-limited transport in immobile intra-grain and intra-aggregate pore water. Experimental data on U(VI) transport was successfully described with a recently developed reactive transport model that accounted for the nonequilibrium adsorption processes through the formulation of a multi-rate surface complexation model treating surface complexation as kinetic reactions. In the present work, a benchmark problem set has been developed for testing existing or newly developed reactive transport codes on their capability to simulate multi-rate surface complexation and dual-domain multi-component reactive transport of U(VI). The benchmark problem consists of three individual component problems on the basis of previous studies investigating the desorption of U(VI) from radionuclide-contaminated sediment from the Hanford 300A site, Washington, USA. Starting with a single-domain model considering constant hydrochemical conditions (component problem 1), the complexity of the model was stepwise increased. In the component problem 2 dual-domain first-order mass transfer was added. The principal problem also included dual-domain mass-transfer, but was further extended for changing hydrochemical conditions in the column’s inflow water, which resulted in drastic changes in the U(VI) desorption pattern due to surface complexation reactions. For the three individual component problems, the corresponding simulation results agree very well among four well-known and thoroughly tested independent reactive transport codes, indicating that the proposed benchmark problem set is a suitable test case.


Groundwater Uranium reactive transport Nonequilibrium mass-transfer Surface complexation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., Wanner, H.: Chemical thermodynamics of uranium. Elsevier, New York (1992)Google Scholar
  2. 2.
    Kohler, M., Curtis, G.P., Kent, D.B., Davis, J.A.: Experimental investigation and modeling of uranium(VI) transport under variable chemical conditions. Water Resour. Res. 32(10), 3539–3551 (1996)CrossRefGoogle Scholar
  3. 3.
    Davis, J.A., Meece, D.E., Kohler, M., Curtis, G.P.: Approaches to surface complexation modeling of uranium (VI) adsorption on aquifer sediments. Geochim. Cosmochim. Ac. 68(18), 3621–3641 (2004)CrossRefGoogle Scholar
  4. 4.
    Bond, D.L., Davis, J.A., Zachara, J.M.: Uranium(VI) release from contaminated vadose zone sediments: estimation of potential contributions from dissolution and desorption. In: Barnett, M.O., Kent, D.B. (eds.) Adsorption of metals to geomedia II, pp. 375–416. Elsevier, Amsterdam (2008)Google Scholar
  5. 5.
    Qafoku, N.P., Zachara, J.M., Liu, C., Gassman, P.L., Qafoku, O.S., Smith, S.C.: Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment. Environ. Sci. Technol. 39(7), 3157–3165 (2005)CrossRefGoogle Scholar
  6. 6.
    Liu, C., Zachara, J.M., Yantasee, W., Majors, P.D., McKinley, J.P.: Microscopic reactive diffusion of uranium contaminated sediments at Hanford, United States. Water Resour. Res. (2006). doi: 10.1029/2006WR005031
  7. 7.
    Stubbs, J.E., Veblen, L.A., Elbert, D.C., Zachara, J.M., Davis, J.A., Veblen, D.R.: Newly recognized hosts for uranium in the Hanford Site vadose zone. Geochim. Cosmochim. Ac. 73, 1563–1576 (2009)CrossRefGoogle Scholar
  8. 8.
    Fox, P.M., Davis, J.A., Hay, M.B., Conrad, M.E., Campbell, K.M., Williams, K.H., Long, P.E.: Rate-limited U(VI) desorption during a small-scale tracer test in a heterogeneous uranium-contaminated aquifer. Water Resour. Res. (2012). doi: 10.1029/2011WR011472
  9. 9.
    Donado, L.D., Sanchez-Vila, X., Dentz, M., Carrera, J., Bolster, D.: Multicomponent reactive transport in multicontinuum media. Water Resour. Res. (2009). doi: 10.1029/2008WR006823
  10. 10.
    Willmann, M., Carrera, J., Sanchez-Vila, X., Silva, O., Dentz, M.: Coupling of mass transfer and reactive transport for nonlinear reactions in heterogeneous media. Water Resour. Res. (2010). doi: 10.1029/2009WR007739
  11. 11.
    Liu, C., Zachara, J.M., Qafoku, N.P., Wang, Z.: Scale-dependent desorption of uranium from contaminated subsurface sediments. Water Resour. Res. (2008). doi: 10.1029/2007WR006478
  12. 12.
    Greskowiak, J., Hay, M.B., Prommer, H., Liu, C., Post, V.E.A., Ma, R., Davis, J.A., Zheng, C., Zachara, J.M.: Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry - Physical versus chemical non-equilibrium model. Water Resour. Res. (2011). doi: 10.1029/2010WR010118
  13. 13.
    Liu, C., Shi, S., Zachara, J.M.: Kinetics of uranium (VI) desorption from contaminated sediments: Effect of geochemical conditions and model evaluation. Environ. Sci. Technol. 43, 6560–6566 (2009)CrossRefGoogle Scholar
  14. 14.
    Yin, J., Haggerty, R., Stoliker, D.L., Kent, D.B., Istok, J.D., Greskowiak, J., Zachara, J.M.: Transient groundwater chemistry near a river: effects on U(VI) transport in laboratory column experiments. Water Resour. Res. (2011). doi: 10.1029/2010WR009369
  15. 15.
    Haggerty, R., Gorelick, S.M.: Multiple-rate mass transfer for modelling diffusion and surface reactions in media with pore scale heterogeneity. Water Resour. Res. 31(8), 2383–2400 (1995)CrossRefGoogle Scholar
  16. 16.
    Culver, T.B., Hallisey, S.P., Sahoo, D., Deitsch, J.J., Smith, J.A.: Modeling the desorption of organic contaminants from long-term contaminated soil using distributed mass transfer rates. Environ. Sci. Technol. 31, 1581–1588 (1997)CrossRefGoogle Scholar
  17. 17.
    Ma, R., Zheng, C., Prommer, H., Greskowiak, J., Liu, C., Zachara, J.M., Rockhold, M.: A field-scale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions. Water Resour. Res. (2010). doi: 10.1029/2009WR008168
  18. 18.
    Ma, R., Liu, C., Greskowiak, J., Prommer, H., Zachara, J., Zheng, C.: Influence of calcite on uranium(VI) reactive transport in the groundwater–river mixing zone. J. Cont. Hydrol. 156, 27–37 (2014)CrossRefGoogle Scholar
  19. 19.
    Ma, R., Zheng, C., Liu, C., Greskowiak, J., Prommer, H., Zachara, J.M.: Assessment of controlling processes for field-scale uranium reactive transport under highly transient flow conditions (2014). doi: 10.1002/2013WR013835
  20. 20.
    Hammond, G.E., Lichtner, P.C.: Field-scale model for the natural attenuation of uranium at the Hanford 300 Area using high-performance computing. Water Resour. Res. (2010). doi: 10.1029/2009WR008819
  21. 21.
    Gwo, J.P., D’Azevedo, E.F., Frenzel, H., Mayes, M., Yeh, G.T., Jardine, P.M., Salvage, K.M., Hoffman, F.M.: HBGC123D: a high performance computer model of coupled hydrogeological and biogeochemical processes. Comput. Geosci. 27, 1231–1242 (2001)CrossRefGoogle Scholar
  22. 22.
    Gwo, J.P., Mayes, M.A., Jardine, P.M.: Quantifying the Physical and chemical mass transfer processes for the fate and transport of Co(II)EDTA in a partially-weathered limestone-shale saprolite. J. Cont. Hydrol. 90, 184–202 (2007)CrossRefGoogle Scholar
  23. 23.
    Cheng, L.: Dual porosity reactive transport modeling, PhD thesis (2005)Google Scholar
  24. 24.
    Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. (2002). doi: 10.1029/2001WR000862
  25. 25.
    Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.Th: Operator-splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles. J. Cont. Hydrol. 88(3–4), 197–218 (2006)CrossRefGoogle Scholar
  26. 26.
    Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.Th: Modeling coupled hydrologic and chemical processes: long-term uranium transport following phosphorus fertilization. Vad. Zone J. 7(2), 698–711 (2008)CrossRefGoogle Scholar
  27. 27.
    Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.Th: Modelling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil. Geoderma 145(3–4), 449–461 (2008)CrossRefGoogle Scholar
  28. 28.
    Prommer, H., Barry, D.A., Zheng, C.: MODFLOW/MT3DMS based reactive multicomponent transport modelling. Ground Water 41(2), 247–257 (2003)CrossRefGoogle Scholar
  29. 29.
    Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L., Molins, S., Moulton, D., Shao, H., Šimůnek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface environmental simulation. Comput. Geosci. (2014). doi: 10.1007/s10596-014-9443-x
  30. 30.
    Greskowiak, J., Prommer, H., Liu, C., Post, V.E.A., Ma, R., Zheng, C., Zachara, J.M.: Comparison of parameter sensitivities between a laboratory and field scale model of uranium transport in a dual domain, distributed-rate reactive system. Water Resour. Res. (2010). doi: 10.1029/2009WR008781
  31. 31.
    Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (Version 2) - a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geol. Surv. Water Resour. Invest. Rep., 99–4259 (1999)Google Scholar
  32. 32.
    Ma, R., Zheng, C.: Not All mass transfer rate coefficients are created equal. Ground Water 49, 772–774 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Janek Greskowiak
    • 1
  • Jack Gwo
    • 2
  • Diederik Jacques
    • 3
  • Jun Yin
    • 4
    • 5
  • K. Ulrich Mayer
    • 4
  1. 1.Department of Biology and Environmental SciencesCarl-von-Ossietzky University of OldenburgOldenburgGermany
  2. 2.Nuclear Regulatory CommissionRockvilleUSA
  3. 3.Institute for Environment, Health, and Safety (EHS), Belgian Nuclear Research Centre (SCK⋅CEN)MolBelgium
  4. 4.Department of Earth, Ocean and Atmospheric SciencesThe University of British ColumbiaVancouverCanada
  5. 5.Ministry of Forests, Land and Natural Resource OperationVancouverCanada

Personalised recommendations