Advertisement

Computational Geosciences

, Volume 19, Issue 1, pp 63–78 | Cite as

Investigation of the effective permeability of vuggy or fractured porous media from a Darcy-Brinkman approach

  • F. Golfier
  • D. Lasseux
  • M. Quintard
ORIGINAL PAPER

Abstract

In this paper, the macroscopic representation of one-phase incompressible flow in fractured and cavity (or vuggy) porous media is studied from theoretical and numerical points of view. A single-domain (or equivalently a Darcy-Brinkman) type of approach is followed to describe the momentum transport at Darcy scale where the fracture or cavity region and porous matrix region are well identified. The Darcy scale model is upscaled yielding a macroscopic momentum equation operating on the equivalent homogeneous medium. Numerical solution to the associated closure problem is proposed in order to compute the effective permeability. Numerical results on some model fractured and cavity media are discussed and compared to some analytical results.

Keywords

Vugular rocks Fractured porous medium Darcy-Brinkman Volume averaging Effective permeability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbogast, T., Lehr, H.: Homogenization of a Darcy-Stokes system modeling vuggy pous media. Comput. Geosci. 10(3), 291–302 (2006)CrossRefGoogle Scholar
  2. 2.
    Arquis, E., Caltagirone, J.: Sur les conditions hydrodynamiques au voisinage d’une interface milieu fluide-milieu poreux : Application à la convection naturelle. C.R. Acad. Sciences Série IIb 299, 1–4 (1984)Google Scholar
  3. 3.
    Bai, H., Yu, P., Winoto, S., Low, H.: Boundary conditions at the interface between fluid layer and fibrous medium. Int. J. Numer. Meth. Fluids 60, 809–825 (2009)CrossRefGoogle Scholar
  4. 4.
    Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech 30(1), 197–207 (1967)CrossRefGoogle Scholar
  5. 5.
    Beckermann, C., Viskanta, R., Ramadhyani, S.: A numerical study of non-darcian natural convection in a vertical enclosure filled with a porous medium. Numerical Heat Transfer 10(6), 557–570 (1986)CrossRefGoogle Scholar
  6. 6.
    Beckermann, C., Viskanta, R., Ramadhyani, S.: Natural convection in vertical enclosures containing simultaneously fluid and porous layers. J. Fluid Mech. 186, 257–284 (1988)CrossRefGoogle Scholar
  7. 7.
    Brinkman, H.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. 1, 27–34 (1947)CrossRefGoogle Scholar
  8. 8.
    Casar-Gonzalez, R.: Stochastic imaging of vuggy formations. In: SPE International Petroleum Conference and Exhibition, Mexico, 1–3 February 2000, SPE 58998 (2000)Google Scholar
  9. 9.
    Chandesris, M., Jamet, D.: Jump conditions and surface-excess quantities at a fluid/porous interface: a multi-scale approach. Transp. Porous Media 78, 419–438 (2009)CrossRefGoogle Scholar
  10. 10.
    Cherblanc, F., Ahmadi, A., Quintard, M.: Two-medium description of dispersion in heterogeneous porous media: calculation of macroscopic properties. Water Resources Res. 39(6), 1154 (2003). doi: 10.1029/2002WR001559 CrossRefGoogle Scholar
  11. 11.
    Cherblanc, F., Ahmadi, A., Quintard, M.: Two-domain description of solute transport in heterogeneous porous media: comparison between theoretical predictions and numerical experiments. Adv. Water Resour. 30(5), 1127–1143 (2007)CrossRefGoogle Scholar
  12. 12.
    Dauba, C., Hamon, G., Quintard, M., Lasseux, D.: Stochastic description of experimental 3d permeability fields in vuggy reservoir cores. Symp. Soc. Core Analysts, 13–16 September, The Hague, The Netherlands (1998)Google Scholar
  13. 13.
    de Zabala, E., Kamath, J.: Laboratory evaluation of waterflood behavior of vugular carbonates. In: SPE Annual Technical Conference and Exhibition, Dallas, 22-25 October 1995, SPE 30780 (1995)Google Scholar
  14. 14.
    Dehghani, K., Edwards, K., Harris, P.: Modeling of waterflood in a vuggy carbonate reservoir. In: SPE Annual Technical Conference and Exhibition, San Antonio, 5-8 October 1997, SPE 38910 (1997)Google Scholar
  15. 15.
    Ene, H., Sanchez-Palencia, E.: Equations et phénomènes de surface pour l’écoulement dans un modèle de milieu poreux. J. Méca 14, 73–108 (1975)Google Scholar
  16. 16.
    Gerke, H.H., VanGenuchten, M.T.: A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resour. Res. 29, 305–319 (1993)CrossRefGoogle Scholar
  17. 17.
    Goharzadeh, A., Khalili, A., Jorgensen, B.: Transition layer thickness at a fluid-porous interface. Phys. Fluids 17(5), 057,102.1–057,102.10 (2005)CrossRefGoogle Scholar
  18. 18.
    Golfier, F., Wood, B., Orgogozo, L., Quintard, M., Buès, M.: Biofilms in porous media: development of macroscopic transport equations via volume averaging with closure for local mass equilibrium conditions. Adv. Water Resour. 32, 463–485 (2009)CrossRefGoogle Scholar
  19. 19.
    Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., Quintard, M.: On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213–254 (2002)CrossRefGoogle Scholar
  20. 20.
    Goyeau, B., Lhuillier, D., Gobin, D., Velarde, M.: Momentum transport at a fluid-porous interface. Int. J. Heat Mass Transfer 46, 4071–4081 (2003)CrossRefGoogle Scholar
  21. 21.
    Gray, W.: A derivation of the equations for multi-phase transport. Chem. Engng. Sci. 30, 229–233 (1975)CrossRefGoogle Scholar
  22. 22.
    Grosan, T., Postelnicu, A., Pop, I.: Brinkman flow of a viscous fluid through a spherical porous medium embedded in another porous medium. Transp. Porous Media 81(1), 89–103 (2010)CrossRefGoogle Scholar
  23. 23.
    Howes, F., Whitaker, S.: The spatial averaging theorem revisited. Chem. Engng Sci. 40, 1387–1392 (1985)CrossRefGoogle Scholar
  24. 24.
    Huang, Z., Yao, J., Li, Y., Wang, C., Lv, X.: Numerical calculation of equivalent permeability tensor for fractured vuggy porous media based on homogenization theory. Commun. Comput. Phys. 9(1), 180–204 (2011)Google Scholar
  25. 25.
    Jäger, W., Mikelić, A.: On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (1990)Google Scholar
  26. 26.
    Jamet, D., Chandesris, M., Goyeau, B.: On the equivalence of the discontinuous one- and two-domain approaches for the modeling of transport phenomena at a fluid/porous interface. Transp. Porous Media 78, 403–418 (2009)CrossRefGoogle Scholar
  27. 27.
    Jones, I.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Phil. Soc. 73, 231–238 (1973)CrossRefGoogle Scholar
  28. 28.
    Joseph, D., Tao, L.: Lubrication of a porous bearing-Stokes’ solution. J. App. Mech. 33(4), 753–760 (1966)CrossRefGoogle Scholar
  29. 29.
    Koplik, J., Levine, H., Zee, A.: Viscosity renormalization in the Brinkman equation. Phys. Fluids 26(10), 2864–2870 (1983)CrossRefGoogle Scholar
  30. 30.
    Laptev, V.: Numerical Solution of Coupled Flow in Plain and Porous Media. Ph.D. thesis, University of Kaiserslautern (2003)Google Scholar
  31. 31.
    Lasseux, D., Dauba, C., Quintard, M., Hamon, G., Prinet, C.: Local permeability measurement in vuggy rocks using minipermeameter: a numerical investigation. Gordon Research Conference, August, Andover, USA (1998)Google Scholar
  32. 32.
    Lasseux, D., Pairoys, F., Bertin, H.: Fluid flow in vugular porous media. In: Poro-Mechanics II, pp. 481–487. Balkema, Lisse (2002)Google Scholar
  33. 33.
    Lucia, F.: Carbonate reservoir characterization. Springer, New York (1999)CrossRefGoogle Scholar
  34. 34.
    Lundgren, T.: Slow flow through stationnary random beds and suspensions of spheres. J. Fluid Mech. 51(2), 273–299 (1972)CrossRefGoogle Scholar
  35. 35.
    Marciniak-Czochra, A., Mikelic, A.: Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization. SIAM: Multiscale Model. Simul. 10(2), 285–305 (2012)Google Scholar
  36. 36.
    Markov, M., Kazatchenko, E., Mousatov, A., Pervago, E.: Permeability of fluid-filled inclusions in porous media. Trans. Porous Media 84(2), 307–317 (2010)CrossRefGoogle Scholar
  37. 37.
    Martys, N., Bentz, D., Garboczi, E.: Computer simulation study of the effective viscosity in Brinkman’s equation. Phys. Fluids 6(4), 1434–1439 (1994)CrossRefGoogle Scholar
  38. 38.
    Moctezuma-Berthier, A., Fleury, M.: Permeability mapping on vuggy core sample using tracer experiments and streamline simulations. In: SPE International Petroleum Conference and Exhibition, Mexico, 1-3 February 2000, SPE 58992 (2000)Google Scholar
  39. 39.
    Moctezuma-Berthier, A., Vizika, O., Thovert, J., Adler, P.: One- and two-phase permeabilities of vugular porous media. Trans. Porous Media 56, 225–244 (2004)CrossRefGoogle Scholar
  40. 40.
    Neale, G., Nader, W.: Practical significance of Brinkman’s extension of Darcy’s law: Coupled parallel flows within a channel and a bounding porous medium. Canad. J. Chem. Eng. 52, 475–478 (1974)CrossRefGoogle Scholar
  41. 41.
    Nield, D.: The boundary correction for the Rayleigh-Darcy problem: Limitation of the Brinkman equation. J. Fluid Mech. 128, 37–46 (1983)CrossRefGoogle Scholar
  42. 42.
    Nield, D.: The Beavers-Joseph boundary condition and related matters: A historical and critical note. Trans. Porous Media 78, 537–540 (2009)CrossRefGoogle Scholar
  43. 43.
    Nilson, R., Griffiths, S.: Wormhole growth in soluble porous materials. Phys. Rev. Lett. 65(13), 1583–1586 (1990)CrossRefGoogle Scholar
  44. 44.
    Ochoa-Tapia, J., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid-I. Theoretical development. I.t. J. Heat Mass Transfer 38, 2635–2646 (1995)CrossRefGoogle Scholar
  45. 45.
    Ochoa-Tapia, J., Whitaker, S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid-II. Comparison with experiment. Int. J. Heat Mass Transfer 38, 2647–2655 (1995)CrossRefGoogle Scholar
  46. 46.
    Okabe, H., Blunt, M.J.: Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics. Water Resour. Res. 43, W12S02 (2007). doi: 10.1029/2006WR005,680 CrossRefGoogle Scholar
  47. 47.
    Padhy, G., Ioannidis, M., Lemaire, C.: Special core analysis studies in vuggy porous media of controlled microstructure. In: International Symposium of the Society of Core Analysts, Toronto, 21-25 August 2005 (2005)Google Scholar
  48. 48.
    Pairoys, F., Lasseux, D., Bertin, H.: An experimental and numerical investigation of water-oil flow in vugular porous media. Symp. Soc. Core Analysts, 21–24 September, Pau, France (2003)Google Scholar
  49. 49.
    Panga, M., Ziauddin, M., Balakotaiah, V.: Two-scale continuum model for simulation of wormholes in carbonate acidization. AIChE J 51(12), 3231–3248 (2005)CrossRefGoogle Scholar
  50. 50.
    Popov, P., Efendiev, Y., Qin, G.: Multiscale modeling and simulations of flows in naturally fractured karst reservoirs. Commun. Comput. Phys. 6, 162–184 (2009)CrossRefGoogle Scholar
  51. 51.
    Quintard, M., Whitaker, S.: Transport in chemically and mechanically heterogeneous porous media III: large-scale mechanical equilibrium and the regional form of Darcy’s law. Adv. Water Resour. 21, 617–629 (1998)CrossRefGoogle Scholar
  52. 52.
    Reza Morad, M., Khalili, A.: Transition layer thickness in a fluid-porous medium of multi-sized sperical beads. Exp. Fluids 46, 323–330 (2009)CrossRefGoogle Scholar
  53. 53.
    Saffman, P.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50, 93–101 (1971)Google Scholar
  54. 54.
    Sahraoui, M., Kaviany, M.: Slip and no-slip velocity boundary conditions at interface of porous, plain media. Int. J. Heat Mass Transp 35, 927–943 (1992)CrossRefGoogle Scholar
  55. 55.
    Soulaine, C., Davit, Y., Quintard, M.: A two-pressure model for slightly compressible single phase flow in bi-structured porous media. Chem. Eng. Sci. 96, 55–70 (2013). doi: 10.1016/j.ces.2013.03.060 CrossRefGoogle Scholar
  56. 56.
    Spaid, M., Phelan Jr. F.: Lattice Boltzmann methods for modeling microscale flow in fibrous porous media. Phys. Fluids 9(9), 2468–2474 (1997)CrossRefGoogle Scholar
  57. 57.
    Tam, C.: The drag on a cloud of spherical particles in low Reynolds number flow. J. Fluid Mech. 38, 537–546 (1969)CrossRefGoogle Scholar
  58. 58.
    Tan, H., Pillai, K.: Finite element implementation of stress-jump and stress continuity conditions at a porous medium clear fluid interface. Comput. Fluids 38(6), 1118–1131 (2009)CrossRefGoogle Scholar
  59. 59.
    Vafai, K., Kim, S.: On the limitations of the Brinkman Forchheimer-extended Darcy equation. Int. J. Heat Fluid Flow 16(1), 11–15 (1995)CrossRefGoogle Scholar
  60. 60.
    Valdes-Parada, F., Aguilar-Madera, C., Ochoa-Tapia, J., Goyeau, B.: Velocity and stress jump conditions between a porous medium and a fluid. Adv. Water Resour. 62, 327–339 (2013). doi: 10.1016/j.advwatres.2013.08.008 CrossRefGoogle Scholar
  61. 61.
    Valdes-Parada, F., Alvarez-Ramirez, B., Goyeau, B., Ochoa-Tapia, J.: Computation of jump coefficients for momentum transfer between a porous medium and a fluid using a closed generalized transfer equation. Transp. Porous Media 78, 439–457 (2009)CrossRefGoogle Scholar
  62. 62.
    Valdes-Parada, F., Goyeau, B., Ochoa-Tapia, J.: Jump momentum boundary condition at a fluid-porous dividing surface: derivation of the closure problem. Chem. Eng. Sci. 62, 4025–4039 (2007)CrossRefGoogle Scholar
  63. 63.
    Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Media 1, 3–25 (1986)CrossRefGoogle Scholar
  64. 64.
    Whitaker, S.: The method of volume averaging, theory and applications of transport in porous media. Kluwer Academic, Dordrecht, The Netherlands (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.GeoRessources LaboratoryVandoeuvre-les-NancyFrance
  2. 2.I2M - TREFLE - UMR CNRS 5295, Esplanade des Arts et MétiersTalence CedexFrance
  3. 3.Université de Toulouse (INPT, UPS) & CNRS; IMFT (Institut Mécanique des Fluides des Toulouse;Allée Camille SoulaToulouseFrance

Personalised recommendations