Computational Geosciences

, Volume 18, Issue 6, pp 989–1008 | Cite as

A Gabriel-Delaunay triangulation of 2D complex fractured media for multiphase flow simulations



Fractured reservoirs are complex domains where discrete fractures are internal constraining boundaries. The discrete fractures are discretized into intersected edges during a grid-generation process, and Delaunay triangulations are often used to represent complex structures. However, a Delaunay triangulation of a fractured medium generally does not conform to the fracture; recovering the fracture elements may violate the Delaunay empty-circle (2D) criterion and may lead to a low-quality triangulation. Refining the triangulation is not a practical solution in complex fractured media. A new approach combines both Gabriel and Delaunay triangulations. A modified Gabriel condition of edge-empty-circle is introduced and locally employed to quantify the quality of the fracture edges in 2D. The fracture edges violating the modified Gabriel criterion are released in the first stage. After that, a Delaunay triangulation is generated considering the rest of the fracture constraints. The released fracture edges are then approximated by the edges of the Delaunay triangles. The final representation of fractures might be slightly different, but a very accurate approximation is always maintained. The method generates fine and coarse grids and offers an accurate and good-quality grid. Numerical examples are presented to assess the performance and efficiency of the proposed method. Finally, the method can be employed in the pre- and postprocessing stages to various possible meshing algorithms.


Discrete fractured media Unstructured grid Delaunay method Gabriel method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, P.M., Thovert, J.F.: Fractures and fracture networks, p. 344. Kluwer (1999)Google Scholar
  2. 2.
    Adler, P.M., Thovert, J.F., Mourzenko, V.V.: Fractured porous media, p. 184. Oxford University Press (2012)Google Scholar
  3. 3.
    Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase via homogenization theory. SIAM J. Math. Anal. 21, 823–836 (2004)CrossRefGoogle Scholar
  4. 4.
    Baca, R., Arnett, R., Langford, D.: Modeling fluid flow in fractured porous rock masses by finite element techniques. Int. J. Numer. Methods Fluids 4, 337–348 (1984)CrossRefGoogle Scholar
  5. 5.
    Bastian, P., Helmig, R.: Efficient fully-coupled solution techniques for two-phase flow in porous media. Parallel multigrid solution and large scale computations. Adv. Water Resour. 23, 199–216 (1999)CrossRefGoogle Scholar
  6. 6.
    Bastian, P., Helmig, R., Jakobs, H., Reichenberger, V.: Numerical simulation of multiphase flow in fractured porous media. In: Chen, Z., Ewing, R.E., Shi, Z.-C. (eds.) Numerical Treatment of Multiphase Flows in Porous Media—Proceedings of the International Workshop, Beijing, China 1999. Also in Lecture notes in physics, vol. 552, pp. 1–18. Springer-Verlag (2000)Google Scholar
  7. 7.
    Berkowitz, B., Bour, O., Davy, P., Odling, N.: Scaling of fracture connectivity in geological formations. Geophys. Res. Lett. 27, 2061–2064 (2000)CrossRefGoogle Scholar
  8. 8.
    Bogdanov, I., Mourzenko, V., Thovert, J., Adler, P.: Two-phase flow through fractured porous media. Phys. Rev. E 68(2), 1–24 (2003)CrossRefGoogle Scholar
  9. 9.
    Bour, O., Davy, P., Darcel, C., Odling, N.: A statistical scaling model for fracture network geometry, with validation on a multiscale mapping of a joint network (Hornelen Basin, Norway). J. Geophys. Res. 107, 2113–2123 (2002)CrossRefGoogle Scholar
  10. 10.
    Bourgueat, A.: Homogenized behavior of diphasic flow in naturally fissured reservoir with uniform fractures. Comp. Methods Appl. Mech. Eng. 47, 205–217 (1984)CrossRefGoogle Scholar
  11. 11.
    Caumon, G., Collon-Drouillet, P., Le Carlier De Veslud, C., Sausse, J., Viseur, S.: Surface-based 3D modeling of geological structures. Math. Geosci. 41(9), 927–945 (2009)CrossRefGoogle Scholar
  12. 12.
    CGAL Computational Geometry Algorithms Library accessed June 2012.
  13. 13.
    Dowd, P.A., Xu, C., Mardia, K., Fowell, R.J.: A comparison of methods for the stochastic simulation of rock fractures. Math. Geol. 39, 697–714 (2007)CrossRefGoogle Scholar
  14. 14.
    Edelsbrunner, H., Tan, T.S.: An upper bound for conforming Delaunay triangulations. Discret. Comput. Geom. 10(2), 197–213 (1993)CrossRefGoogle Scholar
  15. 15.
    Eymard, R., Guichard, C., Herbin, R., Masson, R.: Multiphase flow in porous media using the VAG scheme, finite volumes for complex applications VI problems & perspectives Springer proceedings in mathematics, vol. 4, pp. 409–417 (2011)Google Scholar
  16. 16.
    Eymard, R., Guichard, C., Herbin, R., Masson, R.: Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation, to appear in ZAMM - Journal of Applied Mathematics and Mechanics. doi: 10.1002/zamm.201200206 (2013)
  17. 17.
    Frey, P.J., George, P.L.: Mesh generation: application to finite elements. Hermes Science Publishing, Oxford (2000)Google Scholar
  18. 18.
    Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation analysis. Syst. Zool. Society of Systematic Biologists 18(3), 259–270 (1969). doi: 10.2307/2412323, JSTOR 2412323CrossRefGoogle Scholar
  19. 19.
    Geiger, S., Roberts, S., Matthai, S., Zoppou, C., Burri, A.: Combining finite element and finite volume methods for efficient multiphase flow simulations in highly heterogeneous and structurally complex geologic media. GeoFluids 4(4), 284–299 (2004)CrossRefGoogle Scholar
  20. 20.
    Graf, T., Therrien, R.: A method to discretize non-planar fractures for 3D subsurface flow and transport simulations. Int. J. Numer. Methods Fluids 56, 2069–2090 (2007)CrossRefGoogle Scholar
  21. 21.
    Granet, S., Fabrie, P., Lemmonier, P., Quitard, M.: A single phase flow simulation of fractured reservoir using a discrete representation of fractures. In: Proceedings of the 6th European Conference on the Mathematics of Oil Recovery, Peebles (1998)Google Scholar
  22. 22.
    Hecht, F.: BAMG: Bidimensional Anisotropic Mesh Generator Version v1.00 (2006).
  23. 23.
    Hoteit, H., Firoozabadi, A.: An efficient numerical model for incompressible two-phase flow in fractured media. Adv. Water Resour. 31, 891–905 (2006)CrossRefGoogle Scholar
  24. 24.
    Johnson, C.: Numerical solution of partial differential equations by the finite element method. Dover Publications, p. 288 (1987). ISBN 048646900XGoogle Scholar
  25. 25.
    Karimi-Fard, M., Firoozabadi, A.: Numerical simulation of water injection in fractured media using discrete-fracture model and the Galerkin method. SPE Res Eng (April) 6, 117 (2003)Google Scholar
  26. 26.
    Karimi-Fard, M., Durlofsky, L., Aziz, K.: An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9(2), 227–236 (2004)CrossRefGoogle Scholar
  27. 27.
    Kazemi, H., Gilman, J.: Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution. SPE J. 9, 451–462 (1969)CrossRefGoogle Scholar
  28. 28.
    Kazemi, H., Gilman, J.: Analytical and numerical solution of oil recovery from fractured reservoirs with empirical transfer functions. SPE J. 7(2), 219–227 (1992)Google Scholar
  29. 29.
    Kim, J., Deo, M.: Comparison of the performance of a discrete fracture multiphase model with those using conventional methods. Paper SPE 51928. SPE Reservoir Simulation Symposium, Houston (1999)Google Scholar
  30. 30.
    Kim, J., Deo, M.: Finite element discrete fracture model for multiphase flow in porous media. AIChE J. 46(6), 1120–1130 (2000)CrossRefGoogle Scholar
  31. 31.
    Mallison, B.T., Hui, M.H., Narr, W.: Practical gridding algorithms for discrete fracture modeling workflows. In: 12th European Conference on the Mathematics of Oil Recovery (2010)Google Scholar
  32. 32.
    Matthai, S., Mezentsev, A., Belayneh, M.: Control-volume finite-element two-phase flow experiments with fractured rock represented by unstructured 3D hybrid meshes Reservoir Simulation Symposium The Woodlands, TX, 31 January–2 February (2005)Google Scholar
  33. 33.
    Matula, D.W., Sokal, R.R.: Properties of Gabriel graphs relevant to geographic variation research and clustering of points in the plane. Geogr. Anal. 12(3), 205–222 (1980). doi: 10.1111/j.1538-4632.1980.tb00031.x CrossRefGoogle Scholar
  34. 34.
    Merland, R., Lévy, B., Caumon, G.: Voronoi Grids conformal to 3d structural features. In: 13th European Conference on the Mathematics of Oil Recovery (ECMOR XII) (2012)Google Scholar
  35. 35.
    Michael, S., Riley, M.: An algorithm for generating rock fracture patterns: mathematical analysis. Math. Geol. 36, 683–702 (2004)CrossRefGoogle Scholar
  36. 36.
    Monteagudo, J., Firoozabadi, A.: Control-volume method for numerical simulation of two-phase immiscible flow in two- and three-dimensional discrete-fractured media. Water Resour. Res. 40(7), W07405 (2004)CrossRefGoogle Scholar
  37. 37.
    Murphy, M., Mount, D., Gable, C.W.: A point-placement strategy for conforming Delaunay tetrahedralization. Int. J. Comput. Geom. Appl. 11, 669 (2001). doi: 10.1142/S0218195901000699 CrossRefGoogle Scholar
  38. 38.
    Mustapha, H.: A Gabriel-Delaunay triangulation of complex fractured media for multiphase flow simulations, ECMOR XIII international conference, 10–13 September 2012, Biarritz (2012)Google Scholar
  39. 39.
    Mustapha, H.: Simulation numérique de l’écoulement dans des milieux fracturés tridimensionnels, Thése de Doctorat, Université de Rennes 1. Accessed June 2012 (2005)
  40. 40.
    Mustapha, H., Dimitrakopoulos, R.: Discretizing complex fractured fields for incompressible two-phase flow. Int. J. Numer. Methods in Fluids 65, 764–780 (2009). doi: 10.1002/fld.2197 CrossRefGoogle Scholar
  41. 41.
    Mustapha, H., Mustapha, K.: A new approach to simulating flow in discrete fracture networks with an optimized mesh. SIAM J. Sci. Comput. 29, 1439–1459 (2007)CrossRefGoogle Scholar
  42. 42.
    Mustapha, H., Dimitrakopoulos, R., Graf, T., Firoozabadi, A.: An efficient method for discretizing 3D fractured media for subsurface flow and transport simulations. Int. J. Numer. Methods in Fluids 67(5), 651–670 (2010). doi: 10.1002/fld.2383 CrossRefGoogle Scholar
  43. 43.
    Nackman, L.R., Srinivasan, V.: Point placement for Delaunay triangulation of polygonal domains. In: Proceeding of Third Canadian Conference Computational Geometry, pp. 37–40 (1991)Google Scholar
  44. 44.
    Noorishad, J., Mehran, M.: An upstream finite element method for solution of transient transport equation in fractured porous media. Water Resour. Res. 18, 588–596 (1982)CrossRefGoogle Scholar
  45. 45.
    Pellerin, J., Lévy, B., Caumon, G., Botella, A.: Automatic surface remeshing of 3D structural models at specified resolution: A method based on Voronoi diagrams. Computers & Geosciences 62, 103–116 (2014)CrossRefGoogle Scholar
  46. 46.
    Rouxel-Labbe, M.: G23FM: a package for meshing complex geological media for general purpose reservoir simulators. Schlumberger internal report on reservoir simulators, unpublished (2012)Google Scholar
  47. 47.
    Rypl, D., Bittnar, Z.: In: Topping, B.H.V. (ed.) A hybrid method for triangulation of three-dimensional domains. Civil-Comp Press, Stirlingshire (2005). Paper 67. doi: 10.4203/ccp.81.67
  48. 48.
    Saalfeld, A.: Delaunay edge refinements. In: Proceeding of Third Canadian Conference on Computational Geometry, pp. 33–36 (1991)Google Scholar
  49. 49.
    Shewchuk, J.R.: Constrained Delaunay tetrahedralizations and provably good boundary recovery. In: Eleventh International Meshing Roundtable, pp. 193–204 (2002)Google Scholar
  50. 50.
    Silliman, S.E., Berkowitz, B.: The impact of biased sampling on the estimation of the semivariogram within fractured media containing multiple fracture sets. Math. Geol. 32, 543–560 (2000)CrossRefGoogle Scholar
  51. 51.
    Slough, K., Sudicky, E., Forsyth, P.: Grid refinement for modeling multiphase flow in discretely fractured porous media. Adv. Water Res. 23, 261–269 (1999a)CrossRefGoogle Scholar
  52. 52.
    Slough, K., Sudicky, E., Forsyth, P.: Importance of rock matrix entry pressure on DNAPL migration in fractured geologic materials. Ground Water 37, 237–243 (1999b)CrossRefGoogle Scholar
  53. 53.
    Slough, K., Sudicky, E., Forsyth, P.: Numerical simulation of multiphase flow and phase partitioning in discretely fractured geologic media. J. Contaminate Hydrology 40, 107–136 (1999c)CrossRefGoogle Scholar
  54. 54.
    Yang, Y.J., Zhang, H., Yong, J.H., Zeng, W., Paul, J.C., Sun, J.: Constrained Delaunay triangulation using Delaunay visibility. In: Bebis, G., et al (eds.) ISCV 2006, LNCS 4291, pp. 682–691. Springer-Verlag, Berlin / Heidelberg (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Schlumberger Lambourn CourtAbingdonUK

Personalised recommendations