Computational Geosciences

, Volume 18, Issue 3–4, pp 563–577 | Cite as

Challenges in adjoint-based optimization of a foam EOR process

  • M. Namdar Zanganeh
  • J. F. B. M. Kraaijevanger
  • H. W. Buurman
  • J. D. Jansen
  • W. R. Rossen


We apply adjoint-based optimization to a surfactant-alternating gas foam process using a linear foam model introducing gradual changes in gas mobility and a nonlinear foam model giving abrupt changes in gas mobility as function of oil and water saturations and surfactant concentration. For the linear foam model, the objective function is a relatively smooth function of the switching time. For the nonlinear foam model, the objective function exhibits many small-scale fluctuations. As a result, a gradient-based optimization routine could have difficulty finding the optimal switching time. For the nonlinear foam model, extremely small time steps were required in the forward integration to converge to an accurate solution to the semi-discrete (discretized in space, continuous in time) problem. The semi-discrete solution still had strong oscillations in gridblock properties associated with the steep front moving through the reservoir. In addition, an extraordinarily tight tolerance was required in the backward integration to obtain accurate adjoints. We believe the small-scale oscillations in the objective function result from the large oscillations in gridblock properties associated with the front moving through the reservoir. Other EOR processes, including surfactant EOR and near-miscible flooding, have similar sharp changes and may present similar challenges to gradient-based optimization.


Adjoint-based optimization Simulation Enhanced oil recovery Foam 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apaydin, O., Kovscek, A.R.: Surfactant concentration and end effects on foam flow in homogeneous porous media. Transp. Porous Media 43(3), 511–536 (2001)CrossRefGoogle Scholar
  2. 2.
    Baker, L.E.: Three-phase relative permeability correlations. Paper SPE 17369 presented at the SPE Enhanced Oil Recovery Symposium, Tulsa, Oklahoma, 16–21 April (1988)Google Scholar
  3. 3.
    Bryson, A.E., Ho, Y.-C.: Applied Optimal Control. Taylor and Francis (Hemisphere), Levittown (1975)Google Scholar
  4. 4.
    Cheng, L., Reme, A.B., Shan, D., Coombe, D.A., Rossen, W.R.: Simulating foam processes at high and low foam qualities. Paper SPE 59287 presented at the 2000 SPE/DOE Symposium on Improved Oil Recovery, Tulsa, OK, 3–5 April (2000)Google Scholar
  5. 5.
    Fathi, Z., Ramirez, W.F.: Optimal injection policies for enhanced oil recovery: part 2—surfactant flooding. SPE J. 24(3), 333–341. SPE-12814-PA (1984)CrossRefGoogle Scholar
  6. 6.
    Fathi, Z., Ramirez, W.F.: Use of optimal control theory for computing optimal injection policies for enhanced oil recovery. Automatica 22(1), 33–42 (1986)CrossRefGoogle Scholar
  7. 7.
    Fathi, Z., Ramirez, W.F.: Optimization of an enhanced oil recovery process with boundary controls—a large-scale non-linear maximization. Automatica 23(3), 301–310 (1987)CrossRefGoogle Scholar
  8. 8.
    Jansen, J.D.: Adjoint-based optimization of multi-phase flow through porous media—a review. Comput. Fluids 46(1), 40–51 (2011)CrossRefGoogle Scholar
  9. 9.
    Kourounis, D., Durlofsky, L.J., Jansen, J.D., Aziz, K.: Adjoint formulation and constraint handling for gradient-based optimization of compositional reservoir flow. Comput. Geosci. (2013). doi: 10.1007/s10596-013-9385-8 Google Scholar
  10. 10.
    Kraaijevanger, J.F.B.M., Egberts, P.J.P., Valstar, J.R., Buurman, H.W.: Optimal waterflood design using the adjoint method. Paper SPE 105764 presented at the SPE Reservoir Simulation Symposium, Houston, Texas, 26–28 February (2007)Google Scholar
  11. 11.
    Lei, Y., Li, S., Zhang, X., Zhang, Q., Guo, L.: Dynamic optimization of a polymer flooding process based on implicit discrete maximum principle. Math. Problems Eng. Article ID 281567 (2012). doi: 10.1155/2012/281567
  12. 12.
    Liu, W., Ramirez, W.F.: Optimal control of three-dimensional steamflooding processes. J. Pet. Sci. Eng. 11(2), 137–154 (1994)CrossRefGoogle Scholar
  13. 13.
    Liu, W., Ramirez, W.F., Qi, Y.F.: Optimal control of steamflooding. SPE Adv. Technol. Ser. 1(2), 73–82. SPE-21619-PA (1993)CrossRefGoogle Scholar
  14. 14.
    Mehos, G.J., Ramirez W.F.: Use of optimal control theory to optimize carbon dioxide miscible-flooding enhanced oil recovery. J. Pet. Sci. Eng. 2(4), 247–260 (1989)CrossRefGoogle Scholar
  15. 15.
    Namdar Zanganeh, M.: Simulation and optimization of foam EOR processes. PhD dissertation, Delft University of Technology, Delft (2011)Google Scholar
  16. 16.
    Namdar Zanganeh, M., Kam, S.I., LaForce, T.C., Rossen, W.R.: The method of characteristics applied to oil displacement by foam. SPE J. 16, 8–23. SPE-121580-PA (2011)CrossRefGoogle Scholar
  17. 17.
    Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  18. 18.
    Ramirez, W.F.: Application of Optimal Control Theory to Enhanced Oil Recovery, Vol. 21. Elsevier, Amsterdam (1987)Google Scholar
  19. 19.
    Ramirez, W.F., Fathi, Z., Cagnol, J.L.: Optimal injection policies for enhanced oil recovery: part 1—theory and computational strategies. SPE J. 24(3), 328–332. SPE-11285-PA (1984)CrossRefGoogle Scholar
  20. 20.
    Rossen, W.R.: Foams in Enhanced Oil Recovery. In: Foams: Theory, Measurement, and Applications. Prud’Homme, R.K., Khan, S. (eds.) Marcel Dekker, New York, pp. 413–464 (1996)Google Scholar
  21. 21.
    Rossen, W.R., Zeilinger, S.C., Shi, J.-X., Lim, M.T.: Simplified mechanistic simulation of foam processes in porous media. SPE J. 4(3), 279–287. SPE 57678-PA (1999)CrossRefGoogle Scholar
  22. 22.
    Shan, D., Rossen, W.R.: Optimal injection strategies for foam IOR. SPE J. 9(2), 132–150 (2004). SPE 88811-PAGoogle Scholar
  23. 23.
    Sudaryanto, B.: Optimization of displacement efficiency of oil recovery in porous media using optimal control theory. PhD Dissertation, University of Southern, California, LA (1998)Google Scholar
  24. 24.
    Van Doren, J., Douma, S., Wassing, B., Kraaijevanger, H., de Zwart, B.-R.: Adjoint-based optimization of polymer flooding. Paper SPE 144024 presented at the SPE Enhanced Oil Recovery Conference, Kuala Lumpur 19–21 July (2011)Google Scholar
  25. 25.
    Van Essen, G.M., Jansen, J.-D., Brouwer, D.R., Douma, S.G., Zandvliet, M.J., Rollett, K.I., Harris, D.P.: Optimization of smart wells in the St. Joseph Field. SPE Res. Eval. Eng. 13(4), 588–595. SPE-123563-PA (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • M. Namdar Zanganeh
    • 1
  • J. F. B. M. Kraaijevanger
    • 2
  • H. W. Buurman
    • 2
  • J. D. Jansen
    • 3
  • W. R. Rossen
    • 3
  1. 1.Xodus GroupOranjestraat 4 2514 JBThe Netherlands
  2. 2.Shell Global Solutions InternationalKessler Park 1The Netherlands
  3. 3.Department of Geoscience and EngineeringDelft University of TechnologyDelftNetherlands

Personalised recommendations