Computational Geosciences

, Volume 18, Issue 1, pp 3–16 | Cite as

Prior model identification during subsurface flow data integration with adaptive sparse representation techniques

  • Mohammadreza M. Khaninezhad
  • Behnam Jafarpour


Construction of predictive reservoir models invariably involves interpretation and interpolation between limited available data and adoption of imperfect modeling assumptions that introduce significant subjectivity and uncertainty into the modeling process. In particular, uncertainty in the geologic continuity model can significantly degrade the quality of fluid displacement patterns and predictive modeling outcomes. Here, we address a standing challenge in flow model calibration under uncertainty in geologic continuity by developing an adaptive sparse representation formulation for prior model identification (PMI) during model calibration. We develop a flow-data-driven sparsity-promoting inversion to discriminate against distinct prior geologic continuity models (e.g., variograms). Realizations of reservoir properties from each geologic continuity model are used to generate sparse geologic dictionaries that compactly represent models from each respective prior. For inversion initially the same number of elements from each prior dictionary is used to construct a diverse geologic dictionary that reflects a wide range of variability and uncertainty in the prior continuity. The inversion is formulated as a sparse reconstruction problem that inverts the flow data to identify and linearly combine the relevant elements from the large and diverse set of geologic dictionary elements to reconstruct the solution. We develop an adaptive sparse reconstruction algorithm in which, at every iteration, the contribution of each dictionary to the solution is monitored to replace irrelevant (insignificant) elements with more geologically relevant (significant) elements to improve the solution quality. Several numerical examples are used to illustrate the effectiveness of the proposed approach for identification of geologic continuity in practical model calibration problems where the uncertainty in the prior geologic continuity model can lead to biased inversion results and prediction.


Sparsity Compressed sensing Prior uncertainty Model calibration Flow data integration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process 54(11), 4311–4322 (2006)CrossRefGoogle Scholar
  2. 2.
    Bhark, E., Jafarpour, B., Datta-Gupta, A.: A generalized grid-connectivity-based parameterization for subsurface flow data assimilation. Water Resour. Res. 47, W06517 (2011). doi: 10.1029/2010WR009982 Google Scholar
  3. 3.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  4. 4.
    Britanak, P.C., Yip, P., Rao, K.: Discrete Cosine Transform: General Properties, Fast Algorithms, and Integer Approximation. Academic, New York (2006)Google Scholar
  5. 5.
    Bruckstein, A.M., Donoho, D., Elad, M.: From sparse solution of systems of equations to sparse modeling of signal and images. SIAM Rev. 51(1), 34–81 (2009)CrossRefGoogle Scholar
  6. 6.
    Candès, E., Wakin, M.B., Boyd, S.P.: Enhancing sparsity by reweighted l 1 minimization. J. Four. Anal. Appl. 14(5), 877–905 (2008)CrossRefGoogle Scholar
  7. 7.
    Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)CrossRefGoogle Scholar
  8. 8.
    Deutsch, C.V., Journel, A.G.: GSLIB—Geostatistical Software Library and User’s Guide. Oxford University Press, New York (1998)Google Scholar
  9. 9.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theor. 52(4), 1289–1306 (2006)CrossRefGoogle Scholar
  10. 10.
    Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)CrossRefGoogle Scholar
  11. 11.
    Elad, M.: Sparse and Redundant Representations. From Theory to Applications in Signal and Image Processing. Springer, New York (2010)CrossRefGoogle Scholar
  12. 12.
    ElSheikh, A.H., Wheeler, M.F., Hoteit, I.: Sparse calibration of subsurface flow models using nonlinear orthogonal matching pursuit and an iterative stochastic ensemble method. Adv. Water Resour. (2013). doi: 10.1016/j.advwatres.2013.02.002
  13. 13.
    Gavalas, G.R., Shah, P.C., Seinfeld, J.H.: Reservoir history matching by Bayesian estimation. Soc. Petrol. Eng. J. 16(6), 337–350 (1976)Google Scholar
  14. 14.
    Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS: a reweighted minimum-nrm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)CrossRefGoogle Scholar
  15. 15.
    Jacquard, P., Jain, C.: Permeability distribution from field pressure data. Soc. Petrol. Eng. J. 281–294 (1965)Google Scholar
  16. 16.
    Jafarpour, B.: Wavelet reconstruction of geologic facies from nonlinear dynamic flow measurements. IEEE Trans. Geosci. Remote. Sens. 49(5), 1520–1535 (2010)CrossRefGoogle Scholar
  17. 17.
    Jafarpour, B., Goyal, V.K., Freeman, W.T., McLaughlin, D.B.: Transform-domain sparsity regularization for inverse problems in geosciences. Geophysics 74(5), R69–R83 (2009)CrossRefGoogle Scholar
  18. 18.
    Jafarpour, B., Goyal, V.K., McLaughlin, D.B., Freeman, W.T.: Compressed history matching: exploiting transform-domain sparsity for regularization of nonlinear dynamic data integration problems. Mathem. Geosci. 42(1), 1–27 (2010)CrossRefGoogle Scholar
  19. 19.
    Jafarpour, B., McLaughlin, D.B.: Reservoir characterization with discrete cosine transform, part-1: parameterization, part-2: history matching. Soc. Petrol. Eng. J. 14(1), 182–201 (2009)Google Scholar
  20. 20.
    Jafarpour, B., Tarrahi, M.: Assessing the performance of the ensemble Kalman filter for subsurface flow data integration under variogram uncertainty. Water Resour. Res. 47, W05537 (2011). 26PPGoogle Scholar
  21. 21.
    Jahns, O.J.: A rapid method for obtaining a two-dimensional reservoir description from well pressure response data. Soc. Petrol. Eng. J. 6(12), 315–327 (1966)Google Scholar
  22. 22.
    Khaninezhad, M.M., Jafarpour, B., Li, L.: Sparse geologic dictionaries for subsurface flow model calibration: Part I. Inversion formulation. Adv. Water Resour. 39(0), 106–121 (2012a)CrossRefGoogle Scholar
  23. 23.
    Khaninezhad, M.M., Jafarpour, B., Li, L.: Sparse geologic dictionaries for subsurface flow model calibration: Part II. Robustness to Uncertainty. Adv. Water Resour. 39(0), 122–136 (2012b)CrossRefGoogle Scholar
  24. 24.
    Li, L., Jafarpour, B.: Effective solution of nonlinear subsurface flow inverse problems in sparse bases. Invers. Prob. 26(10), 105016 (2010)CrossRefGoogle Scholar
  25. 25.
    Mallat, S.: A Wavelet Tour of Signal Processing. The Sparse Way, 3rd edn.Academic Press, New York (2008)Google Scholar
  26. 26.
    Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)CrossRefGoogle Scholar
  27. 27.
    Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)CrossRefGoogle Scholar
  28. 28.
    Oliver, D., Reynolds, A., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  29. 29.
    Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)Google Scholar
  30. 30.
    Tropp, J.A., Gilbert, A.C.: Signal recovery from partial information via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53, 4655–66 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Mork Family Department of Chemical Engineering and Material ScienceViterbi School of Engineering, University of Southern CaliforniaLos AngelesUSA

Personalised recommendations