Advertisement

Computational Geosciences

, Volume 17, Issue 2, pp 351–372 | Cite as

Computing gravity-driven viscous fingering in complex subsurface geometries: A high-order discontinuous Galerkin approach

  • A. Gerstenberger
  • G. Scovazzi
  • S. S. Collis
Original Paper

Abstract

We present a formulation of the discontinuous Galerkin method aimed for simulations of gravity-driven viscous fingering instabilities occurring in porous media flow. Specifically, we are targeting applications characterized by complex geometrical features. Viscous fingering instabilities play a very important role in carbon sequestration in brine aquifers. The proposed method has the ability to preserve high order of accuracy on completely unstructured meshes, a feature that makes it ideal for high-fidelity computations of the challenging fingering flow patterns and very complex geometries of actual reservoirs and aquifers. An extensive set of numerical computations is also included, to confirm the stability, accuracy, and robustness of the method.

Keywords

Viscous fingering Discontinuous Galerkin method Gravity-driven flows Porous media flows 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)CrossRefGoogle Scholar
  2. 2.
    Brezzi, F., Marini, L.D., Süli, E.: Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Models Methods Appl. Sci. 14, 1893–1903 (2004)CrossRefGoogle Scholar
  3. 3.
    Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)CrossRefGoogle Scholar
  4. 4.
    Ennis-King, J.P., Preston, I., Paterson, L.: Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Soc. Pet. Eng. J. 17, 349–356 (2005)Google Scholar
  5. 5.
    Girault, V., Sun, S., Wheeler, M.F., Yotov, I.: Coupling discontinuous Galerkin and mixed finite element discretizations using mortar finite elements. SIAM J. Numer. Anal. 46, 949–979 (2008)CrossRefGoogle Scholar
  6. 6.
    Gounot, J., Caltagirone, J.P.: Stabilité et convection naturelle au sein d’une couche poreuse non homogène. Int. J. Heat Mass Transfer 32, 1131–1140 (1989)CrossRefGoogle Scholar
  7. 7.
    Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods Algorithms, Analysis, and Applications. Springer, New York (2008)Google Scholar
  8. 8.
    Hidalgo, J.J., Carrera, J.: Effect of dispersion on the onset of convection during CO2 sequestration. J. Fluid Mech. 640, 441–452 (2009)CrossRefGoogle Scholar
  9. 9.
    Hidalgo, J.J., Carrera, J., Medina, A.: Role of salt sources in density-dependent flow. Water Resour. Res. 45, W05503 (2009)CrossRefGoogle Scholar
  10. 10.
    Hoteit, H., Firoozabadi, A.: Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media. Adv. Water Resour. 41, W11412 (2005)Google Scholar
  11. 11.
    Jr., J.D., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Lecture Notes in Physics, vol. 58. Springer, Berlin (1976)Google Scholar
  12. 12.
    Liu, R., Wheeler, M., Dawson, C., Dean, R.: Modeling of convection-dominated thermoporomechanics problems using incomplete interior penalty Galerkin method. Comput. Methods Appl. Mech. Eng. 198, 912–919 (2009)CrossRefGoogle Scholar
  13. 13.
    Liu, R., Wheeler, M., Dawson, C., Dean, R.: On a coupled discontinuous/continuous Galerkin framework and an adaptive penalty scheme for poroelasticity problems. Comput. Methods Appl. Mech. Eng. 198, 3499–3510 (2009)CrossRefGoogle Scholar
  14. 14.
    Pau, G.S.H., Bell, J.B., Pruess, K., Almgren, A.S., Lijewski, M.J., Zhang, K., Yang, C., Gu, Y.: High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Adv. Water Resour. 33, 443–455 (2010)CrossRefGoogle Scholar
  15. 15.
    Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12, 417–435 (2008)CrossRefGoogle Scholar
  16. 16.
    Riaz, A., Hesse, M., Tchelepi, H.A., Orr, F.M.: Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87–111 (2006)CrossRefGoogle Scholar
  17. 17.
    Rivière, B., Wheeler, M.F.: Discontinuous Galerkin methods for flow and transport problems in porous media. Commun. Numer. Methods Eng. 18, 63–68 (2002)CrossRefGoogle Scholar
  18. 18.
    Rivière, B., Wheeler, M.F., Banas, K.: Part II. Discontinuous Galerkin method applied to a single phase flow in porous media. Comput. Geosci. 4, 337–349 (2000)CrossRefGoogle Scholar
  19. 19.
    Rivière, B., Wheeler, M.F., Girault, V.: Elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)CrossRefGoogle Scholar
  20. 20.
    Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3, 337–360 (1999)CrossRefGoogle Scholar
  21. 21.
    Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39, 902–931 (2001)CrossRefGoogle Scholar
  22. 22.
    Scovazzi, G., Gerstenberger, A., Collis, S.: A discontinuous Galerkin method for gravity-driven viscous fingering instabilities in porous media. J. Comput. Phys. (2011). doi: 10.1016/j.jcp.2012.09.003
  23. 23.
    Siefert, C., Tuminaro, R., Gerstenberger, A., Scovazzi, G., Collis, S.S.: Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order. Comput. Geosci. (2012, submitted)Google Scholar
  24. 24.
    Sun, S., Wheeler, M.F.: Anisotropic and dynamic mesh adaptation for discontinuous Galerkin methods applied to reactive transport. Comput. Methods Appl. Mech. Eng. 195, 3382–3405 (2006)CrossRefGoogle Scholar
  25. 25.
    Sun, S., Wheeler, M.F.: Local problem-based a posteriori error estimators for discontinuous Galerkin approximations of reactive transport. Comput. Math. Appl. 52, 637–650 (2006)CrossRefGoogle Scholar
  26. 26.
    Sun, S., Wheeler, M.F.: Discontinuous Galerkin methods for simulating bioreactive transport of viruses in porous media. Adv. Water Resour. 30, 1696–1710 (2007)CrossRefGoogle Scholar
  27. 27.
    Sun, S., Wheeler, M.F.: Local problem-based a posteriori error estimators for discontinuous Galerkin approximations of reactive transport. Comput. Geosci. 11, 87–101 (2007)CrossRefGoogle Scholar
  28. 28.
    Sun, S.Y., Wheeler, M.F.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43, 195–219 (2005)CrossRefGoogle Scholar
  29. 29.
    Sun, S.Y., Wheeler, M.F.: A posteriori error estimation and dynamic adaptivity for symmetric discontinuous Galerkin approximations of reactive transport problems. Comput. Methods Appl. Mech. Eng. 195, 632–652 (2006)CrossRefGoogle Scholar
  30. 30.
    Xu, X., Chen, S., Zhang, D.: Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Adv. Water Resour. 29, 397–407 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Numerical Analysis and Applications DepartmentSandia National LaboratoriesAlbuquerqueUSA
  2. 2.Civil and Environmental Engineering DepartmentDuke UniversityDurhamUSA
  3. 3.Numerical Analysis and Applications DepartmentSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations