Skip to main content

Advertisement

Log in

Computing gravity-driven viscous fingering in complex subsurface geometries: A high-order discontinuous Galerkin approach

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

We present a formulation of the discontinuous Galerkin method aimed for simulations of gravity-driven viscous fingering instabilities occurring in porous media flow. Specifically, we are targeting applications characterized by complex geometrical features. Viscous fingering instabilities play a very important role in carbon sequestration in brine aquifers. The proposed method has the ability to preserve high order of accuracy on completely unstructured meshes, a feature that makes it ideal for high-fidelity computations of the challenging fingering flow patterns and very complex geometries of actual reservoirs and aquifers. An extensive set of numerical computations is also included, to confirm the stability, accuracy, and robustness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  Google Scholar 

  2. Brezzi, F., Marini, L.D., Süli, E.: Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Models Methods Appl. Sci. 14, 1893–1903 (2004)

    Article  Google Scholar 

  3. Cockburn, B., Shu, C.W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  Google Scholar 

  4. Ennis-King, J.P., Preston, I., Paterson, L.: Onset of convection in anisotropic porous media subject to a rapid change in boundary conditions. Soc. Pet. Eng. J. 17, 349–356 (2005)

    Google Scholar 

  5. Girault, V., Sun, S., Wheeler, M.F., Yotov, I.: Coupling discontinuous Galerkin and mixed finite element discretizations using mortar finite elements. SIAM J. Numer. Anal. 46, 949–979 (2008)

    Article  Google Scholar 

  6. Gounot, J., Caltagirone, J.P.: Stabilité et convection naturelle au sein d’une couche poreuse non homogène. Int. J. Heat Mass Transfer 32, 1131–1140 (1989)

    Article  Google Scholar 

  7. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods Algorithms, Analysis, and Applications. Springer, New York (2008)

    Google Scholar 

  8. Hidalgo, J.J., Carrera, J.: Effect of dispersion on the onset of convection during CO2 sequestration. J. Fluid Mech. 640, 441–452 (2009)

    Article  Google Scholar 

  9. Hidalgo, J.J., Carrera, J., Medina, A.: Role of salt sources in density-dependent flow. Water Resour. Res. 45, W05503 (2009)

    Article  Google Scholar 

  10. Hoteit, H., Firoozabadi, A.: Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media. Adv. Water Resour. 41, W11412 (2005)

    Google Scholar 

  11. Jr., J.D., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Lecture Notes in Physics, vol. 58. Springer, Berlin (1976)

  12. Liu, R., Wheeler, M., Dawson, C., Dean, R.: Modeling of convection-dominated thermoporomechanics problems using incomplete interior penalty Galerkin method. Comput. Methods Appl. Mech. Eng. 198, 912–919 (2009)

    Article  Google Scholar 

  13. Liu, R., Wheeler, M., Dawson, C., Dean, R.: On a coupled discontinuous/continuous Galerkin framework and an adaptive penalty scheme for poroelasticity problems. Comput. Methods Appl. Mech. Eng. 198, 3499–3510 (2009)

    Article  Google Scholar 

  14. Pau, G.S.H., Bell, J.B., Pruess, K., Almgren, A.S., Lijewski, M.J., Zhang, K., Yang, C., Gu, Y.: High-resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Adv. Water Resour. 33, 443–455 (2010)

    Article  Google Scholar 

  15. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12, 417–435 (2008)

    Article  Google Scholar 

  16. Riaz, A., Hesse, M., Tchelepi, H.A., Orr, F.M.: Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87–111 (2006)

    Article  Google Scholar 

  17. Rivière, B., Wheeler, M.F.: Discontinuous Galerkin methods for flow and transport problems in porous media. Commun. Numer. Methods Eng. 18, 63–68 (2002)

    Article  Google Scholar 

  18. Rivière, B., Wheeler, M.F., Banas, K.: Part II. Discontinuous Galerkin method applied to a single phase flow in porous media. Comput. Geosci. 4, 337–349 (2000)

    Article  Google Scholar 

  19. Rivière, B., Wheeler, M.F., Girault, V.: Elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  Google Scholar 

  20. Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3, 337–360 (1999)

    Article  Google Scholar 

  21. Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39, 902–931 (2001)

    Article  Google Scholar 

  22. Scovazzi, G., Gerstenberger, A., Collis, S.: A discontinuous Galerkin method for gravity-driven viscous fingering instabilities in porous media. J. Comput. Phys. (2011). doi:10.1016/j.jcp.2012.09.003

  23. Siefert, C., Tuminaro, R., Gerstenberger, A., Scovazzi, G., Collis, S.S.: Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order. Comput. Geosci. (2012, submitted)

  24. Sun, S., Wheeler, M.F.: Anisotropic and dynamic mesh adaptation for discontinuous Galerkin methods applied to reactive transport. Comput. Methods Appl. Mech. Eng. 195, 3382–3405 (2006)

    Article  Google Scholar 

  25. Sun, S., Wheeler, M.F.: Local problem-based a posteriori error estimators for discontinuous Galerkin approximations of reactive transport. Comput. Math. Appl. 52, 637–650 (2006)

    Article  Google Scholar 

  26. Sun, S., Wheeler, M.F.: Discontinuous Galerkin methods for simulating bioreactive transport of viruses in porous media. Adv. Water Resour. 30, 1696–1710 (2007)

    Article  Google Scholar 

  27. Sun, S., Wheeler, M.F.: Local problem-based a posteriori error estimators for discontinuous Galerkin approximations of reactive transport. Comput. Geosci. 11, 87–101 (2007)

    Article  Google Scholar 

  28. Sun, S.Y., Wheeler, M.F.: Symmetric and nonsymmetric discontinuous Galerkin methods for reactive transport in porous media. SIAM J. Numer. Anal. 43, 195–219 (2005)

    Article  Google Scholar 

  29. Sun, S.Y., Wheeler, M.F.: A posteriori error estimation and dynamic adaptivity for symmetric discontinuous Galerkin approximations of reactive transport problems. Comput. Methods Appl. Mech. Eng. 195, 632–652 (2006)

    Article  Google Scholar 

  30. Xu, X., Chen, S., Zhang, D.: Convective stability analysis of the long-term storage of carbon dioxide in deep saline aquifers. Adv. Water Resour. 29, 397–407 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Scovazzi.

Additional information

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerstenberger, A., Scovazzi, G. & Collis, S.S. Computing gravity-driven viscous fingering in complex subsurface geometries: A high-order discontinuous Galerkin approach. Comput Geosci 17, 351–372 (2013). https://doi.org/10.1007/s10596-012-9334-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-012-9334-y

Keywords

Navigation