Computational Geosciences

, Volume 17, Issue 1, pp 117–138 | Cite as

Large-scale history matching with quadratic interpolation models

  • Hui Zhao
  • Gaoming Li
  • Albert C. Reynolds
  • Jun Yao
Original Paper


Due to the limited availability of adjoint code in commercial reservoir simulators for gradient calculations, there is a need to explore the applicability of derivative-free optimization algorithms for large-scale history matching. This paper tests the utility of three derivative-free optimization algorithms (stochastic Gaussian search direction (SGSD), new unconstrained optimization algorithm (NEWUOA), and quadratic interpolation model-based algorithm guided by approximate gradient (QIM-AG)) for history matching. The SGSD method uses a negative stochastic gradient which is obtained by simultaneously perturbing all the model parameters using a Gaussian random vector. For a continuous objective function and a sufficiently small perturbation size, the stochastic gradient is always uphill and the expectation of the stochastic gradient converges to the true gradient as the perturbation size goes to zero. NEWUOA is a quadratic interpolation model-based optimization algorithm. At each iteration, the objective function is first approximated by a quadratic interpolation model. The quadratic model is then minimized to obtain an updated reservoir description for the next iteration. The number of interpolation points (reservoir simulation runs) required by NEWUOA must be larger than the dimension of reservoir model parameter space in order to construct the initial quadratic model. QIM-AG reduces the required number of interpolation points by replacing the first-order coefficients that appear in the quadratic model by an approximate gradient. The approximate gradient used in this study is an average of several stochastic gradients from SGSD. To reduce the dimension of the optimization problem, a simple parameterization method based on the prior covariance matrix is applied. The prior covariance matrix is approximated using an ensemble of unconditional realizations. The parameterization avoids the calculation of the inverse of the prior covariance matrix during optimization and may further regularize the ill-posed inverse problem.


SGSD NEWUOA Parameterization History matching Uncertainty quantification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aanonsen, S.I., Naevdal, G., Oliver, D.S., Reynolds, A.C., Valles, B.: The ensemble Kalman filter in reservoir engineering—a review. SPE J. 14(3), 393–412 (2009)Google Scholar
  2. 2.
    Abacioglu, Y., Oliver, D.S., Reynolds, A.C.: Efficient reservoir history matching using subspace vectors. Comput. Geosci. 5(2), 151–172 (2001)CrossRefGoogle Scholar
  3. 3.
    Barker, J.W., Cuypers, M., Holden, L.: Quantifying uncertainty in production forecasts: another look at the PUNQ-S3 problem. SPE J. 6(4), 433–441 (2001)Google Scholar
  4. 4.
    Bangerth, W., Klie, H., Wheeler, M., Stoa, P., Sen, M.: On optimization algorithm for the reservoir oil well placement problem. Comput. Geosci. 10, 303–319 (2006)CrossRefGoogle Scholar
  5. 5.
    Beckner, B., Song, X.: Field development planning using simulated annealing—optimal economic well scheduling and placement. SPE Annual Technical Conference and Exhibition, Dallas, TX (1995)Google Scholar
  6. 6.
    Bissell, R.: Calculating optimal parameters for history matching. In: 4th European Conference on the Mathematics of Oil Recovery, Roros, Norway (1994)Google Scholar
  7. 7.
    Bissell, R., Dubrule, O., Lamy, P., Swaby, P., Lepine, O.: Combining goestatistical modelling with gradient information for history matching: the pilot point method, SPE 38730. In: Proc. of the SPE Annual Technical Conference and Exhibition, San Antonio, TX (1997)Google Scholar
  8. 8.
    Brouwer, D., Jansen, J.: Dynamic optimization of water flooding with smart wells using optimial control theory. SPE J. 9(4), 391–402 (2004)Google Scholar
  9. 9.
    Chavent, G.M., Dupuy, M., Lemonnier, P.: History matching by use of optimal control theory. SPE J. 15(1), 74–86 (1975)Google Scholar
  10. 10.
    Chen, W.H., Gavalas, G.R., Seinfeld, J.H., Wasserman, M.L.: A new algorithm for automatic history matching. SPE J. 14(6), 593–608 (1974)Google Scholar
  11. 11.
    Chen, C., Wang, Y., Li, G., Reynolds, A.C.: Closed-loop reservoir management on the Brugge test case. Comput. Geosci. 14(4), 691–703 (2010)CrossRefGoogle Scholar
  12. 12.
    Chen, Y., Oliver, D.S.: Ensemble-based closed-loop reservoir management (SPE-118926). In: Proceedings of SPE Reservoir Simulation Symposium (2009)Google Scholar
  13. 13.
    Chen, Y., Oliver, D.S., Zhang, D.: Efficient ensemble-based closed-loop production optimization. SPE J. 14(4), 634–645 (2009)Google Scholar
  14. 14.
    Cheng, H., Datta-Gupta, A., He, Z.: Acomparison of traveltime and amplitude matching for field-scale production-data integration: sensitivity, nonlinearity, and practical implications. SPE J. 10(1), 75–90 (2005)Google Scholar
  15. 15.
    Christie, M., MacBeth, C., Subbey, S.: Multiple history-matched models for Teal South. The Leading Edge 21(3), 286–289 (2002)CrossRefGoogle Scholar
  16. 16.
    Conn, A.R., Toint, Ph.L.: An algorithm using quadratic interpolation for unconstrained derivative free optimization. In: Di Pillo, G., Gianessi, F. (eds.) Nonlinear Optimization and Applications, pp. 27–47. Plenum, New York (1996)Google Scholar
  17. 17.
    Conn, A.R., Schienberg, K., Toint, Ph.L.: Recent progress in unconstrained nonlinear optimization without derivatives. Math. Program. 79, 397–414 (1997)Google Scholar
  18. 18.
    Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. MPS-SIAM Book Series on Optimization, SIAM, Philadelphia (2009)CrossRefGoogle Scholar
  19. 19.
    Custsodio, A.L., Vicente, L.N.: Using sampling and simplex derivatives in pattern search methods. SIAM J. Optim. 18, 537–555 (2007)CrossRefGoogle Scholar
  20. 20.
    Deutsch, C.V., Journel, A.G.: The application of simulated annealing to stochastic reservoir modeling. SPE Advanced Technology Series 2(2), 222–227 (1994)Google Scholar
  21. 21.
    Do, S.: Application SPSA-type algorithms to production optimization. Ph.D. thesis, The University of Tulsa, Tulsa, Oklahoma (2012)Google Scholar
  22. 22.
    Emerick, A., Silva, E., Messer, B., Almeida, L., Szwarcman, D., Pacheco, M., Vellasco, M.: Well placement optimization using a genetic algorithm with nonlinear constraints. SPE-99690. In: Proceedings of SPE Reservoir Simulation Symposium, The Woodlands, TX, USA (2009)Google Scholar
  23. 23.
    Eydinov, D., Aanonsen, S.I., Haukas, J., Aavatsmark, I.: A method for automatic history matching of a compositional reservoir simulator with multipoint flux approximation. Comput. Geosci. 12(2), 209–225 (2008)CrossRefGoogle Scholar
  24. 24.
    Fasano, G., Morales, J.L., Nocedal, J.: On the geometry phase in model-based algorithms for derivative-free optimization. Optim. Methods Softw. 24(1), 145–154 (2009)CrossRefGoogle Scholar
  25. 25.
    Floris, F.J.T., Bush, M.D., Cuypers, M., Roggero, F., Syversveen, A.-R.: Methods for quantifying the uncertainty of production forecasts: a comparative study. Petroleum Geoscience 7, S87–S96 (2001)CrossRefGoogle Scholar
  26. 26.
    Gao, G.: Data integration and uncertainty evaluation for large scale automatic history matching problems. Ph.D. thesis, University of Tulsa (2005)Google Scholar
  27. 27.
    Gao, G., Reynolds, A.C.: An improved implementation of the LBFGS algorithm for automatic history matching. SPE J. 11(1), 5–17 (2006)Google Scholar
  28. 28.
    Gao, G., Zafari, M., Reynolds, A.C.: Quantifying uncertainty for the PUNQ-S3 problem in a Bayesian setting with RML and EnKF. SPE J. 11(4), 506–515 (2006)Google Scholar
  29. 29.
    Gao, G., Li, G., Reynolds, A.C.: A stochastic optimization algorithm for automatic history matching. SPE J. 12(2), 196–208 (2007)Google Scholar
  30. 30.
    Gavalas, G.R., Shah, P.C., Seinfeld, J.H.: Reservoir history matching by Bayesian estimation. SPE J. 16(6), 337–350 (1976)Google Scholar
  31. 31.
    Hajizadeh, Y., Christie, M., Demyanov, V.: Ant colony optimization for history matching. SPE 121193. In: Proceedings of the EUROPEC/EAGE conference and Exhitbition, Amsterdam, The Netherlands (2009)Google Scholar
  32. 32.
    He, Z., Yoon, S., Datta-Gupta, A.: Streamline-based production data integration with gravity and changing field conditions. SPE J. 7(4), 423–436 (2002)Google Scholar
  33. 33.
    Jacquard, P., Jain, C.: Permeability distribution from field pressure data. SPE J. 5(4), 281–294 (1965)Google Scholar
  34. 34.
    Jafarpour, B., McLaughlin, D.B.: History matching with an ensemble Kalman filter and discrete cosine parameterization. Comput. Geosci. 12(2), 227–244 (2008)CrossRefGoogle Scholar
  35. 35.
    Jafarpour, B., Goyal, V.K., McLaughlin, D.B., Freeman, W.T.: Exploiting transform-domain sparsity in reservoir history matching. SPE 117819. In: Proceedings of the 2009 SPE Simulation Symposium, The Woodlands, TX (2009)Google Scholar
  36. 36.
    Jafarpour, B., Goyal, V.K., McLaughlin, D.B., Freeman, W.T.: Compressed history matching: exploiting transformdomain sparsity for regularization of nonlinear dynamic data integration problems. Math. Geosc. 42(1), 1–27 (2010)CrossRefGoogle Scholar
  37. 37.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings IEEE International Conference on Neural Networks, IV. pp. 1942–1948. IEEE Service Ceneter, Piscataway, NJ (1995)Google Scholar
  38. 38.
    Kitanidis, P.K.: Parameter uncertainty in estimation of spatial functions: Bayesian estimation. Water Resour. Res. 22(4), 499–507 (1986)CrossRefGoogle Scholar
  39. 39.
    Kolda, T.K., O’Leary, D.P., Nazareth, L.: BFGS with update skipping and varying memory. SIAM J. Optim. 8(4), 1060–1083 (1998)CrossRefGoogle Scholar
  40. 40.
    Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM REV. 45(3), 385–482 (2003)CrossRefGoogle Scholar
  41. 41.
    Kraaijevanger, J.F.B.M., Egberts, P.J.P., Valstar, J.R., Buurman, H.W.: Optimal waterflood design using the adjoint method. SPE 105764. In: Proceedings of the SPE Reservoir Simulation Symposium (2007)Google Scholar
  42. 42.
    Li, R., Reynolds, A.C., Oliver, D.S.: Sensitivity coefficients for three-phase flow history matching. J. Canadian Pet. Tech. 42(4), 70–77 (2003)Google Scholar
  43. 43.
    Li, R., Reynolds, A.C., Oliver, D.S.: History matching of three-phase flow production data. SPE J. 8(4), 328–340 (2003)Google Scholar
  44. 44.
    Li, G., Reynolds, A.C.: Iterative ensemble Kalman filters for data assimilation. SPE J. 14(3), 496–505 (2009)Google Scholar
  45. 45.
    Li, G., Reynolds, A.C.: Uncertainty quantification of reservoir performance predictions using a stochastic optimization algorithm. Comput. Geosci. 15(2), 421–429 (2011)Google Scholar
  46. 46.
    Marazzi, M., Nocedal, J.: Wedge trust region methods for derivative free optimization. In: Report on Optimization Technology Center, Northwestern University, Evanston (2000)Google Scholar
  47. 47.
    Mohamed, L., Christie, M., Demyanov, V.: Application of Particle Swarms for history matching in the Brugge reservoir. SPE 135264, SPE. In: Proceedings of Annual Technical Conference and Exhibition, Florence, Italy (2010)Google Scholar
  48. 48.
    Moré, J.J., Sorensen, D.: Computing a trust region step. SIAM J. Sci. 4, 553–572 (1983)CrossRefGoogle Scholar
  49. 49.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006)Google Scholar
  50. 50.
    Oeuvray, R.: Trust-region methods based on radial basis functions with application to biomedical imaging. Ph.D. thesis, EPF, Lausanne, Switzerland (2005)Google Scholar
  51. 51.
    Oldenberg, D.W., McGillivray, P.R., Ellis, R.G.: Generalizaed subspace methods for large-scale inverse problems. Geophysical Journal International 114(1), 12–20 (1993)CrossRefGoogle Scholar
  52. 52.
    Oliver, D.S., He, N., Reynolds, A.C.: Conditioning Permeability Fields to Pressure Data. European Conference for the Mathematics of Oil Recovery V (1996)Google Scholar
  53. 53.
    Oliver, D.S.: Multiple realizations of the permeability field from well-test data. SPE J. 1(2) 145–154 (1996)Google Scholar
  54. 54.
    Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  55. 55.
    Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15, 185–221 (2011)CrossRefGoogle Scholar
  56. 56.
    Onwunalu, J.E., Durlofsky, L.J.: A new well-pattern-optimization procedure for large-scale field development. SPE J. 16(3), 594–607 (2011)Google Scholar
  57. 57.
    Peters, L., Arts, R.J., Brouwer, G.K., Geel, C.R., Cullick, S., Lorentzen, R.J., Chen, Y., Dunlop, K.N.B., Vossepoel, F.C., Xu, R., Sarma, P., Alhuthali, A.H., Reynolds, A.C.: Results of the Brugge benchmark study for flooding optimization and history matching. SPE Reserv. Eval. Eng. 13(3), 391–405 (2010)Google Scholar
  58. 58.
    Powell, M.J.: UOBYQA: unconstrained optimization by quadratic approximation. Math. Program. 92, 555–582 (2002)CrossRefGoogle Scholar
  59. 59.
    Powell, M.J.: Least Frobenius norm updating of quadratic models that satisfy interpolation conditions. Math. Program. 100, 183–215 (2004)CrossRefGoogle Scholar
  60. 60.
    Powell, M.J.: The NEWUOA software for unconstrained optimization without derivatives in large-scale nonlinear optimization. In: Di Pillo, G., Roma, M. (eds.) Large-Scale Nonlinear Optimization. Springer, Netherlands (2006)Google Scholar
  61. 61.
    Powell, M.J.: Developments of NEWUOA for unconstrained minimization without derivatives. Technical Report DAMTP NA2004/08, Department of Applied Mathematics and Theoretical Physics, Cambridge University, Cambridge, UK (2007)Google Scholar
  62. 62.
    Powell, M.J.: The BOBYQA algorithm for bound constrained optimization without derivatives. Optimization, NA2009/06, (2009)
  63. 63.
    Reynolds, A.C., He, N., Chu, L., Oliver, D.S.: Reparameterization techniques for generating reservoir descriptions conditioned to variograms and well-test pressure data. SPE J. 1(4), 413–426 (1996)Google Scholar
  64. 64.
    Rodrigues, J.R.P.: Calculating derivatives for automatic history matching. Comput. Geosci. 10, 119–136 (2006)CrossRefGoogle Scholar
  65. 65.
    Romero, C.E., Carter, J.N., Zimmerman, R.W., Gringarten, A.C.: Modified genetic algorithm for reservoir characterization, SPE-64765. In: Proceedings of SPE Annual Technical Conference and Exhibition, Dallas, TX (2000)Google Scholar
  66. 66.
    Sarma, P., Durlofsky, L., Aziz, K., Chen, W.: Efficient real-time reservoir management using adjoint-based optimal control and model updating. Comput. Geosci. 10, 3–36 (2006)CrossRefGoogle Scholar
  67. 67.
    Sarma, P., Durlofsky, L., Aziz, K.: A new approach to automatic history matching using kernel PCA. SPE 106176. In: Proceedings of the 2007 SPE Simulation Symposium, Houston TX (2007)Google Scholar
  68. 68.
    Shah, P.C., Gavalas, G.R., Seinfeld, J.H.: Error analysis in history matching: the optimum level of parameterization. SPE J. 18(6), 219–228 (1978)Google Scholar
  69. 69.
    Spall, J.C.: A stochastic approximation technique for generating maximum likelihood parameter estimates. In: Proceedings of the American Control Conference, pp. 1161–1167. Minneapolis, MN (1987)Google Scholar
  70. 70.
    Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Automat. Control 37, 332–341 (1992)CrossRefGoogle Scholar
  71. 71.
    Spall, J.C.: Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE T. Aero. Eclec. Sys. 34 817–823 (1998)CrossRefGoogle Scholar
  72. 72.
    Tavakoli, R., Reynolds, A.C.: History matching with parameterization based on the SVD of a dimensionless sensitivity matrix. SPE J. 15(2), 495–508 (2010)Google Scholar
  73. 73.
    van Essen, G., Zandvliet, M., den Hof, P.V., Bosgra, O., Jansen, J.: Robust water flooding optimization of multiple geological scenarios. SPE J. 14(1), 202–210 (2009)Google Scholar
  74. 74.
    Vasco, D.W., Yoon, S., Datta-Gupta, A.: Integrating dynamic data into high-resolution reservoir models using streamline-based analytic sensitivity coefficients. SPE J. 4(4), 389–399 (1999)Google Scholar
  75. 75.
    Wang, C., Li, G., Reynolds, A.C.: Production optimization in closed-loop reservoir managment. SPE J. 14(3), 506–523 (2009)Google Scholar
  76. 76.
    Wu, Z., Reynolds, A.C., Oliver, D.S.: Conditioning geostatistical models to two-phase production data. SPE J. 4(2), 142–155 (1999)Google Scholar
  77. 77.
    Zafari, M., Reynolds, A.C.: Assessing the uncertainty in reservoir description and performance predictions with the ensemble Kalman filter. SPE J. 12(3), 382–391 (2007)Google Scholar
  78. 78.
    Zhang, D., Lu, Z., Chen, Y.: Dynamic reservoir data assimilation with an efficient, dimension-reducd Kalman filter. SPE J. 12(8), 108–117 (2007)Google Scholar
  79. 79.
    Zhao, H., Chen, C., Do, S., Li, G., Reynolds, A.C.: Maximization of a dynamic quadratic model for production optimization. SPE-141317. In: Proceedings of the 2011 SPE Simulation Symposium, Houston TX (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Hui Zhao
    • 1
  • Gaoming Li
    • 2
  • Albert C. Reynolds
    • 2
  • Jun Yao
    • 3
  1. 1.Yangtze UniversityHubeiChina
  2. 2.University of TulsaTulsaUSA
  3. 3.China University of PetroleumShandongChina

Personalised recommendations