Skip to main content
Log in

GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Reactive mass transport (RMT) simulation is a powerful numerical tool to advance our understanding of complex geochemical processes and their feedbacks in relevant subsurface systems. Thermodynamic equilibrium defines the baseline for solubility, chemical kinetics, and RMT in general. Efficient RMT simulations can be based on the operator-splitting approach, where the solver of chemical equilibria is called by the mass transport part for each control volume whose composition, temperature, or pressure has changed. Modeling of complex natural systems requires consideration of multiphase–multicomponent geochemical models that include nonideal solutions (aqueous electrolytes, fluids, gases, solid solutions, and melts). Direct Gibbs energy minimization (GEM) methods have numerous advantages for the realistic geochemical modeling of such fluid–rock systems. Substantial improvements and extensions to the revised GEM interior point method algorithm based on Karpov’s convex programming approach are described, as implemented in the GEMS3K C/C+ + code, which is also the numerical kernel of GEM-Selektor v.3 package (http://gems.web.psi.ch). GEMS3K is presented in the context of the essential criteria of chemical plausibility, robustness of results, mass balance accuracy, numerical stability, speed, and portability to high-performance computing systems. The stand-alone GEMS3K code can treat very complex chemical systems with many nonideal solution phases accurately. It is fast, delivering chemically plausible and accurate results with the same or better mass balance precision as that of conventional speciation codes. GEMS3K is already used in several coupled RMT codes (e.g., OpenGeoSys-GEMS) capable of high-performance computing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bale, C.W., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Ben Mahfoud, R., Melancon, J., Pelton, A.D., Petersen, S.: FactSage thermochemical software and databases. Calphad 26, 189–228 (2002)

    Article  Google Scholar 

  2. Bale, C.W., Belisle, E., Chartrand, P., Degterov, S.A., Eriksson, G., Hack, K., Jung, I.H., Kang, Y.B., Melancon, J., Pelton, A.D., Robelin, C., Petersen, S.: FactSage thermochemical software and databases—recent developments. Calphad 33, 295–311 (2009)

    Article  Google Scholar 

  3. Baumann, C., Gerya, T.V., Connolly, J.A.D.: Numerical modelling of spontaneous slab breakoff dynamics during continental collision. Geol. Soc. Lond. Spec. Publ. 332, 99–114 (2010)

    Article  Google Scholar 

  4. Bethke, C.M.: Geochemical and Biogeochemical Reaction Modeling. Cambridge University Press, New York (2008)

    Google Scholar 

  5. Borisov, M.V., Shvarov, Y.V.: Thermodynamics of Geochemical Processes. Moscow State University Publishers, Moscow (in Russian, 1992)

    Google Scholar 

  6. Bruno, J., Bosbach, D., Kulik, D., Navrotsky, A.: Chemical Thermodynamics of Solid Solutions of Interest in Radioactive Waste Management. A State-of-the-art Report. OECD NEA, Paris (2007)

  7. Centler, F., Shao, H., De Biase, C., et al.: GeoSysBRNS—a flexible multidimensional reactive transport model for simulating biogeochemical subsurface processes. Comput. Geosci. 36, 397–405 (2010)

    Article  Google Scholar 

  8. Chudnenko, K.V.: Thermodynamic Modeling in Geochemistry: The Theory, the Algorithms, the Software, the Applications. Academic Publishing House GEO, Novosibirsk (in Russian, 2010)

    Google Scholar 

  9. Chudnenko, K.V., Karpov, I.K., Kulik, D.A.: A High-Precision IPM-2 Non-linear Minimization Module of GEM-Selektor v.2-PSI Program Code for geochemical Thermodynamic Modeling. Technical Report TM-44–02–06. Paul Scherrer Institut, Villigen (2002)

  10. Connolly, J.A.D., Petrini, K.: An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J. Metamorph. Geol. 20, 697–708 (2002)

    Article  Google Scholar 

  11. Connolly, J.A.D.: Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005)

    Article  Google Scholar 

  12. Coumou, D., Matthai, S., Geiger, S., Driesner, T.: A parallel FE–FV scheme to solve fluid flow in complex geologic media. Comput. Geosci. 34, 1697–1707 (2008)

    Article  Google Scholar 

  13. de Capitani, C., Brown, T.H.: The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim. Cosmochim. Acta 51, 2639–2652 (1987)

    Article  Google Scholar 

  14. de Capitani, C., Petrakakis, K.: The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am. Mineral. 95, 1006–1016 (2010)

    Article  Google Scholar 

  15. Dolejs, D., Wagner, T.: Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: implications for hydrothermal mass transfer in granitic rocks. Geochim. Cosmochim. Acta 72, 526–553 (2008)

    Article  Google Scholar 

  16. Ebel, D.S., Ghiorso, M.S., Sack, R.O., Grossmann, L.: Gibbs energy minimization in gas + liquid + solid systems. J. Comput. Chem. 21, 247–256 (2000)

    Article  Google Scholar 

  17. Engesgaard, P., Kipp, K.L.: A geochemical transport model for redox-controlled movement of mineral fronts in groundwater-flow systems—a case of nitrate removal by oxidation of pyrite. Water Resour. Res. 28, 2829–2843 (1992)

    Article  Google Scholar 

  18. Eriksson, G., Hack, K.: Chemsage—a computer program for the calculation of complex chemical equilibria. Metall. Mater. Trans. B 21, 1013–1023 (1990)

    Google Scholar 

  19. Eriksson, G., Thompson, W.T.: A procedure to estimate equilibrium concentrations in multicomponent systems and related applications. Calphad 13, 389–400 (1989)

    Article  Google Scholar 

  20. Ghiorso, M.S.: Algorithms for the estimation of phase stability in heterogeneous thermodynamic systems. Geochim. Cosmochim. Acta 58, 5489–5501 (1994)

    Article  Google Scholar 

  21. GNU free software foundation: GNU Lesser General Public License. Free Software Foundation, Boston. http://www.gnu.org/licenses/lgpl.html (2007)

  22. Hammond, G., Lichtner, P., Lu, C.: Subsurface multiphase flow and multicomponent reactive transport modeling using high-performance computing. J. Phys. Conf. Ser. 78(012025), 1–10 (2007)

    Google Scholar 

  23. Karpov, I.K.: Computer-Aided Physico-Chemical Modeling in Geochemistry. Nauka Publ., Novosibirsk (in Russian, 1981)

    Google Scholar 

  24. Karpov, I.K., Chudnenko, K.V., Kulik, D.A.: Modeling chemical mass-transfer in geochemical processes: thermodynamic relations, conditions of equilibria and numerical algorithms. Am. J. Sci. 297, 767–806 (1997)

    Article  Google Scholar 

  25. Karpov, I.K., Chudnenko, K.V., Kulik, D.A., Avchenko, O.V., Bychinskii, V.A.: Minimization of Gibbs free energy in geochemical systems by convex programming. Geochem. Int. 39, 1108–1119 (2001)

    Google Scholar 

  26. Karpov, I.K., Chudnenko, K.V., Kulik, D.A., Bychinskii, V.A.: The convex programming minimization of five thermodynamic potentials other than Gibbs energy in geochemical modeling. Am. J. Sci. 302, 281–311 (2002)

    Article  Google Scholar 

  27. Keizer, M.G., Van Riemsdijk, W.H.: ECOSAT. Technical Report. Department Soil Science and Plant Nutrition, Wageningen Agricultural University, Wageningen, The Netherlands (1998)

  28. Kelley, C.T.: Solving Nonlinear Equations with Newton’s Method. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  29. Kolditz, O., Görke, U.-J., Shao, H., Wang, W. (eds.): Benchmarks and Examples for Thermo-Hydro-Mechanical/Chemical Processes in Porous Media. Series: Lecture Notes in Computational Science and Engineering, vol. 86. Springer, Berlin (2012)

    Google Scholar 

  30. Kolditz, O., Bauer, S., Bilke, L., Böttcher, N., Delfs, J.O., Fischer, T., Görke, U.J., Kalbacher, T., Kosakowski, G., McDermott, C.I., Park, C.H., Radu, F., Rink, K., Shao, H., Shao, H.B., Sun, F., Sun, Y.Y., Singh, A.K., Taron, J., Walther, M., Wang, W., Watanabe, N., Wu, Y., Xie, M., Xu, W., Zehner, B.: OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ. Earth Sci. (2012). doi:10.1007/s12665–012–1546-x

    Google Scholar 

  31. Kulik, D., Berner, U., Curti, E.: Modelling chemical equilibrium partitioning with the GEMS-PSI code. In: Smith, B., Gschwend, B. (eds.) PSI Scientific Report 2003/Volume IV, Nuclear Energy and Safety, pp. 109–122. Paul Scherrer Institut, Villigen (2004)

    Google Scholar 

  32. Kulik, D.A.: Classic adsorption isotherms incorporated in modern surface complexation models: implications for sorption of actinides. Radiochim. Acta 94, 765–778 (2006)

    Article  Google Scholar 

  33. Kulik, D.A.: Standard molar Gibbs energies and activity coefficients of surface complexes (thermodynamic insights). In: Luetzenkirchen, J. (ed.) Surface Complexation Modelling. Interface Science and Technology, vol. 11, pp. 171–250. Elsevier, Amsterdam (2006)

    Chapter  Google Scholar 

  34. Lukas, H.L., Fries, S., Sundman, B.: Computational Thermodynamics: The Calphad Method. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  35. McDermott, C.I., Walsh, R., Mettier, R., Kosakowski, G., Kolditz, O.: Hybrid analytical and finite element numerical modeling of mass and heat transport in fractured rocks with matrix diffusion. Comput. Geosci. 13, 349–361 (2009)

    Article  Google Scholar 

  36. Monecke, T., Kempe, U., Trinkler, M., Thomas, R., Dulski, P., Wagner, T.: Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system. Geology 39, 295–298 (2011)

    Article  Google Scholar 

  37. Nakagawa, T., Tackley, P.J., Deschamps, F., Connolly, J.A.D.: Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth’s mantle. Geochem. Geophys. Geosyst. (G3) 10, Q03004 (2009)

    Article  Google Scholar 

  38. Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S.G.S. Water-Resources Investigations Report 99–4259, Denver, Colorado (1999)

  39. Pfingsten, W.: Efficient modeling of reactive transport phenomena by a multispecies random walk coupled to chemical equilibrium. Nucl. Technol. 116, 208–221 (1996)

    Google Scholar 

  40. Pozo, R.: Template numerical toolkit: an interface for scientific computing in C+ +. National Institute of Standards and Trechnology (NIST), Gaithersburg, MD. http://math.nist.gov/tnt (2004)

  41. Prommer, H.: A Reactive Multicomponent Transport Model for Saturated Porous Media. User’s Manual Version 1.0. Contaminated Land Assessment and Remediation Research Centre. The University of Edinburgh, UK (2002)

  42. Rastetter, E.B.: Modeling coupled biogeochemical cycles. Front. Ecol. Environ. 9, 68–73 (2011)

    Article  Google Scholar 

  43. Reed, M.H.: Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases and an aqueous phase. Geochim. Cosmochim. Acta 46, 513–528 (1982)

    Article  Google Scholar 

  44. Reed, M.H.: Calculation of simultaneous chemical equilibria in aqueous-mineral-gas systems and its application to modeling hydrothermal processes. Rev. Econ. Geol. 10, 109–124 (1998)

    Google Scholar 

  45. Reed, M.H., Spycher, N.F.: Calculation of pH and mineral equilibria in hydrothermal waters with applications to geothermometry and studies of boiling and dilution. Geochim. Cosmochim. Acta 48, 1479–1492 (1984)

    Article  Google Scholar 

  46. Shao, H., Dmytrieva, S.V., Kolditz, O., Kulik, D.A., Pfingsten, W., Kosakowski, G.: Modeling reactive transport in non-ideal aqueous-solid solution system. Appl. Geochem. 24, 1287–1300 (2009)

    Article  Google Scholar 

  47. Shao, H., Kulik D.A., Berner U., Kosakowski G., Kolditz O.: Modeling the competition between solid solution formation and cation exchange on the retardation of aqueous radium in an idealized bentonite column. Geochem. J. 43, e37–e42 (2009)

    Article  Google Scholar 

  48. Shvarov, Y.V.: A general equilibrium criterion for an isobaric-isothermal model of a chemical system. Geochem. Int. 18, 38–45 (1981)

    Google Scholar 

  49. Shvarov, Y.: A numerical criterion for existence of the equilibrium state in an open chemical system. Sci. Geol. Bull. 42, 365–369 (1989)

    Google Scholar 

  50. Shvarov, Y.V.: HCh: New potentialities for the thermodynamic simulation of geochemical systems offered by windows. Geochem. Int. 46, 834–839 (2008)

    Article  Google Scholar 

  51. Singh, A.K., Goerke, U.-J., Kolditz, O.: Numerical simulation of non-isothermal compositional gas flow: application to carbon dioxide injection into gas reservoirs. Energy 36, 3446–3458 (2011)

    Article  Google Scholar 

  52. Siret, D., Poulet, T., Regenauer-Lieb, K., Connolly, J.A.D.: PreMDB, a thermodynamically consistent material database as a key to geodynamic modelling. Acta Geotech. 4, 107–115 (2009)

    Article  Google Scholar 

  53. Steefel, C.I., DePaolo, D.J., Lichtner, P.C.: Reactive transport modeling: an essential tool and a new research approach for the Earth sciences. Earth Planet. Sci. Lett. 240, 539–558 (2005)

    Article  Google Scholar 

  54. Tenzer, H., Park, C.L., Kolditz, O., McDermott, C.I.: Application of the geomechanical facies approach and comparison of exploration and evaluation methods used at Soultz-sous-Forets (France) and Spa Urach (Germany) geothermal sites. Environ. Earth Sci. 61, 853–880 (2010)

    Article  Google Scholar 

  55. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. SIAM, Philadelphia (1997)

    Book  Google Scholar 

  56. Tromp, T.K., Van Cappellen, P., Key R.M.: A global model for the early diagenesis of organic carbon and organic phosphorous in marine sediments. Geochim. Cosmochim. Acta 59, 1259–1284 (1995)

    Article  Google Scholar 

  57. Van der Lee, J., De Windt, L.: Present state and future directions of modeling of geochemistry in hydrogeological systems. J. Contam. Hydrol. 47, 265–282 (2001)

    Article  Google Scholar 

  58. Van der Lee, J., De Windt, L., Lagneau, V., Goblet, P.: Module-oriented modeling of reactive transport with HYTEC. Comput. Geosci. 29, 265–275 (2003)

    Article  Google Scholar 

  59. Wagner, T., Kulik, D.A., Hingerl, F.F., Dmytrieva, S.V.: GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models. Canadian Mineralogist 50 (2012, in press)

  60. Wang, W., Kosakowski, G., Kolditz, O.: A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput. Geosci. 35, 1631–1641 (2009)

    Article  Google Scholar 

  61. Wang, Y., Van Cappellen, P.: A multicomponent reactive transport model of early diagenesis: application to redox cycling in coastal marine sediments. Geochim. Cosmochim. Acta 60, 2993–3014. (1996)

    Article  Google Scholar 

  62. Westall, J.C., Zachary, J.L., Morel, F.M.M.: MINEQL: A Compact Program for Computation of Chemical Equilibria in Aquatic Systems. R.M. Parsons Laboratory for Water Resources and Hydrodynamics, Massachusetts Institute of Technology, Cambridge, MA (1976)

  63. Xie, M., Kolditz, O., Moog, H.C.: A geochemical transport model for thermo-hydro-chemical (THC) coupled processes with saline water. Water Resour. Res. 47, W02545 (2011)

    Article  Google Scholar 

  64. Kosakowski, G., Kulik, D.A., Shao, H.: OpenGeoSys-GEMS: Hybrid parallelization of a reactive transport code with MPI and threads. Geophys. Res. Abstr. 14, EGU2012–2642 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii A. Kulik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulik, D.A., Wagner, T., Dmytrieva, S.V. et al. GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput Geosci 17, 1–24 (2013). https://doi.org/10.1007/s10596-012-9310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-012-9310-6

Keywords

Navigation