Advertisement

Computational Geosciences

, Volume 16, Issue 2, pp 409–422 | Cite as

Using vorticity to quantify the relative importance of heterogeneity, viscosity ratio, gravity and diffusion on oil recovery

  • Bilal Rashid
  • Astor-Lonice Bal
  • Glyn J. J. Williams
  • Ann H. Muggeridge
Original Paper

Abstract

The vorticity of the displacement velocity is used to derive dimensionless numbers that can be used to quantify the relative importance of viscosity ratio, gravity, diffusion/dispersion and permeability heterogeneity on secondary hydrocarbon recovery. Using this approach, a new objective measure of the impact of permeability and porosity heterogeneity on reservoir performance is obtained. This is used, in conjunction with other dimensionless numbers, to analyse the relative impact of heterogeneity, buoyancy effects, mobility ratio and dispersion on breakthrough time and recovery at 1 pore volume injected during first contact miscible gas injection. This is achieved using results obtained from detailed simulation of miscible displacements through a range of geologically realistic reservoir models. This study goes some way towards developing a unified mathematical framework to determine under which flow conditions reservoir heterogeneity becomes more important than other physical processes. We propose that comparison of these dimensionless numbers can be used to identify the key factors controlling recovery and thus assist the engineer in determining appropriate enhanced oil recovery techniques to improve recovery.

Keywords

Heterogeneity Ranking Dimensionless numbers EOR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alpay, O.: A practical approach to defining reservoir heterogeneity. J. Pet. Technol. 24(7), 841–848 (1972). doi: 10.2118/3608-PA. SPE-3608-PAGoogle Scholar
  2. 2.
    Arya, A., Hewett, T., Larson, R., Lake, L.: Dispersion and reservoir heterogeneity. SPE Reserv. Eng. 3(1), 139–148 (1988). doi: 10.2118/14364-PA. SPE-14364-PAGoogle Scholar
  3. 3.
    Blackwell, R., Rayne, J., Terry, W.: Factors influencing the efficiency of miscible displacement. Trans. AIME 217, 1–8 (1959). SPE-1131-GGoogle Scholar
  4. 4.
    Buckingham, E.: On physically similar systems; illustrations of the use of dimensional equations. Phys. Rev. 4, 345 (1914)CrossRefGoogle Scholar
  5. 5.
    Camhi, E., Meiburg, E., Ruith, M.: Miscible rectilinear displacements with gravity override. Part 2. Heterogeneous porous media. J. Fluid Mech. 420, 259–276 (2000)MATHCrossRefGoogle Scholar
  6. 6.
    Choi, K., Jackson, M.D., Hampson, G.J., Jones, A.D., Reynolds, A.D.: Predicting the impact of sedimentological heterogeneity on gas–oil and water–oil displacements: fluvio-deltaic Pereriv Suite Reservoir, Azeri–Chirag–Gunashli Oilfield, South Caspian Basin. Pet. Geosci. 17(2), 143–163 (2011). doi: 10.1144/1354-079310-013 CrossRefGoogle Scholar
  7. 7.
    Christie, M.: High-resolution simulation of unstable flows in porous media. SPE Reserv. Eng. 4(3), 297–303 (1989). doi: 10.2118/16005-PA. SPE-16005-PAGoogle Scholar
  8. 8.
    Christie, M., Blunt, M.: Tenth SPE comparative solution project: a comparison of upscaling techniques. SPE Reserv. Evalu. Eng. 4(4), 308–317 (2001). SPE-72469Google Scholar
  9. 9.
    Christie, M., Bond, D.: Detailed simulation of unstable processes in miscible flooding. SPE Reserv. Eng. 2(4), 514–522 (1987). doi: 10.2118/14896-PA. SPE-14896-PAGoogle Scholar
  10. 10.
    Christie, M., Jones, A., Muggeridge, A.: Comparison between laboratory experiments and detailed simulations of unstable miscible displacements influenced by gravity. In: Buller, A. (ed.) North Sea Oil and Gas Reservoirs II, pp. 245–300. Graham and Trotman, London (1990)CrossRefGoogle Scholar
  11. 11.
    Coll, C., Muggeridge, A., Jing, X.: Regional upscaling: a new method to upscale waterflooding in heterogeneous reservoirs for a range of capillary and gravity effects. SPE J. 6(3), 299–310 (2001). doi: 10.2118/74139-PA. SPE-74139-PAGoogle Scholar
  12. 12.
    Craig Jr., F., Sanderlin, J., Moore, D., Geffen, T.: A laboratory study of gravity segregation in frontal drives. Trans. AIME 210, 275–281 (1957). SPE-676-GGoogle Scholar
  13. 13.
    Crane, F., Kendall, H., Gardner, G.: Some experiments on the flow of miscible fluids of unequal density through porous media. SPE J. 3(4), 277–280 (1963). SPE-535-PAGoogle Scholar
  14. 14.
    Davies, G., Muggeridge, A., Jones, A.: Miscible displacements in a heterogeneous rock: detailed measurements and accurate predictive simulation. In: SPE Annual Technical Conference and Exhibition. Dallas, Texas (1991). SPE 22615Google Scholar
  15. 15.
    Dietz, D.: A theoretical approach to the problem of encroaching and by-passing edge water. In: Koninkl. Ned. Akad. Wetenschap., vol. B56, pp. 83–92. Akad. van Wetenschappen, Amsterdam (1953)Google Scholar
  16. 16.
    Dumore, J.: Stability considerations in downward miscible displacements. SPE J. 4(4), 356–362 (1964). doi: 10.2118/961-pa. SPE-961-PAGoogle Scholar
  17. 17.
    Dykstra, H., Parsons, R.: The prediction of oil recovery by water-flood. In: Secondary Recovery of Oil in the United States, 2nd edn., pp. 160–174. API, Dallas (1950)Google Scholar
  18. 18.
    Fayers, F., Newley, T.: Detailed validation of an empirical model for viscous fingering with gravity effects. SPE Reserv. Eng. 3(2), 542–550 (1988). doi: 10.2118/15993-PS. SPE-15993-PAGoogle Scholar
  19. 19.
    Fayers, F.J., Muggeridge, A.H.: Extensions to Dietz theory and behavior of gravity tongues in slightly tilted reservoirs. SPE Reserv. Eng. 5(4), 487–494 (1990). doi: 10.2118/18438-pa. SPE-18438-PAGoogle Scholar
  20. 20.
    Feeney, R., Lea, R., Dyer, S., Gietler, S.: First record of the wolf-eel, Anarrhichtys ocellatus (Pisces: Anarchichadidae) from Baja California, Mexico. Calif. Fish Game 93(1), 52–55 (2007)Google Scholar
  21. 21.
    Floris, F., Bush, M., Cuypers, M., Roggero, F., Syversveen, A.R.: Methods for quantifying the uncertainty of production forecasts: a comparative study. Pet. Geosci. 7, 587–596 (2001)CrossRefGoogle Scholar
  22. 22.
    Giordano, R., Salter, S., Mohanty, K.: The effects of permeability variations on flow in porous media. In: SPE Annual Technical Conference and Exhibition. Las Vegas, Nevada (1985). SPE 14365Google Scholar
  23. 23.
    Heller: Onset of instability patterns between miscible fluids in porous media. J. Appl. Phys. 37(4), 1566–1579 (1966)CrossRefGoogle Scholar
  24. 24.
    Henson, R., Todd, A., Corbett, P.: Geologically based screening criteria for improved oil recovery projects. In: SPE/DOE Improved Oil Recovery Symposium. Tulsa, Oklahoma (2002). SPE 75148Google Scholar
  25. 25.
    Hill, S.: Channeling in packed columns. Chem. Eng. Sci. 1(6), 247–253 (1952)CrossRefGoogle Scholar
  26. 26.
    Homsy, G.M.: Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19(1), 271–311 (1987). doi: 10.1146/annurev.fl.19.010187.001415 CrossRefGoogle Scholar
  27. 27.
    Katsnelson, J., Kotz, S.: On the upper limits of some measures of variability. Theor. Appl. Climatol. 8(1), 103–107 (1957)Google Scholar
  28. 28.
    Kjonsvik, D., Doyle, J., Jacobsen, T., Jones, A.: The effects of sedimentary heterogeneities on production from a shallow marine reservoir—what really matters. In: SPE European Petroleum Conference. London (1994). SPE-28445Google Scholar
  29. 29.
    Koval, E.: A method for predicting the performance of unstable miscible displacement in heterogeneous media. SPE J. 3(2), 145–154 (1963). doi: 10.2118/450-PA. SPE-450-PAGoogle Scholar
  30. 30.
    Lake, L., Jensen, J.: A review of heterogeneity measures used in reservoir characterization. In situ 15(4), 409–439 (1991). SPE-20156Google Scholar
  31. 31.
    Lake, L.W., Hirasaki, G.J.: Taylor’s dispersion in stratified porous media. SPE J. 21(4), 459–468 (1981). doi: 10.2118/8436-pa. SPE-8436-PAGoogle Scholar
  32. 32.
    Mahani, H., Muggeridge, A.: Improved coarse grid generation using vorticity. In: 14th Europec Biennial Conference, p. 8. Madrid, Spain (2005). SPE 94319Google Scholar
  33. 33.
    Mahani, H., Muggeridge, A., Ashjari, M.: Vorticity as a measure of heterogeneity for improving coarse grid generation. Pet. Geosci. 15, 91–102 (2009). doi: 10.1144/1354-079309-802 CrossRefGoogle Scholar
  34. 34.
    Moissis, D., Wheeler, M.: Effect of the structure of the porous medium on unstable miscible displacement. In: Cushman, J. (ed.) Dynamics of Fluids in Hierarchical Porous Media, pp. 243–271. Academic, San Diego (1990)Google Scholar
  35. 35.
    Muggeridge, A., Jackson, M., Agbehi, O., Al-Shuraiqi, H., Grattoni, C.: Quantifying bypassed oil in the vicinity of discontinuous shales during gravity dominated flow. In: 14th Europec Biennial Conference. Madrid, Spain (2005). SPE 94134Google Scholar
  36. 36.
    Muggeridge, A., Jackson, M., Al-Mahrooqi, S., Al-Marjabi, M., Grattoni, C.: Quantifying bypassed oil in the vicinity of discontinuous shales. In: SPE Annual Technical Conference and Exhibition. San Antonio (2002). SPE 77487Google Scholar
  37. 37.
    Muskat, M.: The Flow of Homogeneous Fluids through Porous Media, first edn. International Series in Physics. McGraw-Hill Book, New York (1937)MATHGoogle Scholar
  38. 38.
    Novakovic, D.: Numerical reservoir characterization using dimensionless scale numbers with application in upscaling. Ph.D. dissertation, Louisiana State University (2002)Google Scholar
  39. 39.
    Peaceman, D.: Fundamentals of Reservoir Simulation. Elsevier Science, Amsterdam (1977)Google Scholar
  40. 40.
    Perkins, T., Johnston, O.: A review of diffusion and dispersion in porous media. SPE J. 3(1), 70–84 (1963). doi: 10.2118/480-pa. SPE-480-PAGoogle Scholar
  41. 41.
    Permadi, A., Yuwono, I., Simanjuntak, A.: Effects of vertical heterogeneity on waterflood performance in stratified reservoir: case study in Bangko field, Indonesia. In: SPE Asia Pacific Conference on Integrated Modelling for Asset Management. Kuala Lumpur, Malaysia (2004)Google Scholar
  42. 42.
    Polasek, T., Hutchinson, C.: Characterization of non-uniformities within a sandstone reservoir from a fluid mechanics standpoint. In: Proceedings of Seventh World Petroleum Congress, vol. 2, pp. 397–407. Elsevier, Amsterdam (1967)Google Scholar
  43. 43.
    Pozridikis, C.: Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press, Oxford (1997)Google Scholar
  44. 44.
    Rashid, B., Bal, A., Williams, G., Muggeridge, A.: Quantifying the impact of permeability heterogeneity on secondary recovery performance. In: SPE Annual Technical Conference and Exhibition. Florence, Italy (2010). SPE 135125Google Scholar
  45. 45.
    Riaz, A., Meiburg, E.: Three-dimensional vorticity dynamics of miscible porous media flows. J. Turbul. 3, 061 (2002)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Riaz, A., Meiburg, E.: Three-dimensional miscible displacement simulations in homogeneous porous media with gravity override. J. Fluid. Mech. 494, 95–117 (2003). doi: 10.1017/S0022112003005974 MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Riaz, A., Meiburg, E.: Vorticity interaction mechanisms in variable-viscosity heterogeneous miscible displacements with and without density contrast. J. Fluid. Mech. 517, 1–25 (2004). doi: 10.1017/S0022112004000448 MATHCrossRefGoogle Scholar
  48. 48.
    Ruark, A.: Inspectional analysis: a method which supplements dimensional analysis. J. Elisha Mitchell Sci. Soc. 51, 127–133 (1935)Google Scholar
  49. 49.
    Ruith, M., Meiburg, E.: Miscible rectilinear displacements with gravity override. Part 1. Homogeneous porous medium. J. Fluid. Mech. 420, 225–257 (2000)MATHCrossRefGoogle Scholar
  50. 50.
    Schmalz, J., Rahme, H.: The variation of waterflood performance with variation in permeability profile. Prod. Mon. 15(9), 9–12 (1950)Google Scholar
  51. 51.
    Schumann, T., Mostert, J.: On the variability and reliability of precipitation. Bull. Am. Meteorol. Soc. 30(3), 110–113 (1949)Google Scholar
  52. 52.
    Shook, M., Li, D., Lake, L.: Scaling immiscible flow through permeable media by inspectional analysis. In Situ 16(4), 311–350 (1992)Google Scholar
  53. 53.
    Shook, M.G., Mitchell, K.M.: A robust measure of heterogeneity for ranking earth models: the F-Phi curve and dynamic Lorenz coefficient. In: SPE Annual Technical Conference and Exhibition. New Orleans, Louisiana, USA (2009). doi: 10.2118/124625-MS. SPE 124625
  54. 54.
    Stephen, K.D., Pickup, G.E., Sorbie, K.S.: The local analysis of changing force balances in immiscible incompressible two-phase flow. Transp. Porous Media 45(1), 63–88 (2001)CrossRefGoogle Scholar
  55. 55.
    Tchelepi, H., Orr Jr., F.: Interaction of viscous fingering, permeability heterogeneity, and gravity segregation in three dimensions. SPE Reserv. Eng. 9(4), 266–271 (1994). doi: 10.2118/25235-pa. SPE-25235-PAGoogle Scholar
  56. 56.
    Tidwell, V., Wilson, J.: Heterogeneity, permeability patterns, and permeability upscaling: physical characterization of a block of Massillon sandstone exhibiting nested scales of heterogeneity. SPE Reserv. Evalu. Eng. 3(4), 283–291 (2000). doi: 10.2118/65282-PA. SPE-65282-PAGoogle Scholar
  57. 57.
    Tungdumrongsub, S., Muggeridge, A.: Layering and oil recovery: the impact of permeability contrast, gravity, viscosity and dispersion. In: SPE Europec/EAGE Annual Conference and Exhibition. Barcelona, Spain (2010). SPE 131602Google Scholar
  58. 58.
    Tyler, K., Henriquez, A., Svanes, T.: Modeling heterogeneities in fluvial domains: a review of the influence on production profiles. In: J. Yarus, R. Chambers (eds.) AAPG Computer Applications in Geology, vol. 3, pp. 77–90. AAPG, Tulsa (1994)Google Scholar
  59. 59.
    Waggoner, J., Castillo, J., Lake, L.W.: Simulation of EOR processes in stochastically generated permeable media. SPE Form. Eval. 7(2), 173–180 (1992). SPE-21237-PAGoogle Scholar
  60. 60.
    Weber, K.: Influence of common sedimentary structures on fluid flow in reservoir models. SPE J. Pet. Technol. 34(3), 665–672 (1982). doi: 10.2118/9247-PA. SPE-9247-PAGoogle Scholar
  61. 61.
    White, C., Horne, R.: Computing absolute transmissibility in the presence of fine-scale heterogeneity. In: Ninth SPE Symposium on Reservoir Simulation. San Antonio, Texas (1987). doi: 10.2118/16011-MS. SPE-16011-MS

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Bilal Rashid
    • 1
  • Astor-Lonice Bal
    • 2
  • Glyn J. J. Williams
    • 2
  • Ann H. Muggeridge
    • 1
  1. 1.Imperial College LondonLondonUK
  2. 2.BP ExplorationMiddlesexUK

Personalised recommendations