Computational Geosciences

, Volume 16, Issue 3, pp 661–675 | Cite as

Parallel inexact constraint preconditioning for ill-conditioned consolidation problems

  • Carlo Janna
  • Massimiliano Ferronato
  • Giuseppe Gambolati
Original Paper


Constraint preconditioners have proved very efficient for the solution of ill-conditioned finite element (FE) coupled consolidation problems in a sequential computing environment. Their implementation on parallel computers, however, is not straightforward because of their inherent sequentiality. The present paper describes a novel parallel inexact constraint preconditioner (ParICP) for the efficient solution of linear algebraic systems arising from the FE discretization of the coupled poro-elasticity equations. The ParICP implementation is based on the use of the block factorized sparse approximate inverse incomplete Cholesky preconditioner, which is a very recent and effective development for the parallel preconditioning of symmetric positive definite matrices. The ParICP performance is experimented with in real 3D coupled consolidation problems, proving a scalable and efficient implementation of the constraint preconditioning for high-performance computing. ParICP appears to be a very robust algorithm for solving ill-conditioned large-size coupled models in a parallel computing environment.


Preconditioning Parallel computing Iterative methods Coupled consolidation 

Mathematics Subject Classifications (2010)

65F08 65F10 65Y05 68W10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lukšan, L., Vlček, J.: Indefinitely preconditioned inexact Newton method for large sparse equality constrained nonlinear programming problems. Numer. Linear Algebr. Appl. 5, 219–247 (1998)MATHCrossRefGoogle Scholar
  2. 2.
    Keller, C., Gould, N.I.M., Wathen, A.J.: Constraint preconditioning for indefinite linear systems. SIAM J. Math. Anal. Appl. 21, 1300–1317 (2000)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Perugia, I., Simoncini, V.: Block-diagonal and indefinite symmetric preconditioners for mixed finite elements formulations. Numer. Linear. Algebr. Appl. 7, 585–616 (2000)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Silvester, D.J., Elman, H.C., Kay, D., Wathen, A.J.: Efficient preconditioning of the linearized Navier–Stokes equations for incompressible flow. J. Comput. Appl. Math. 128, 261–279 (2001)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Elman, H.C., Silvester, D.J., Wathen, A.J.: Performance and analysis of saddle point preconditioners for the discrete steady-state Navier–Stokes equations. Numer. Math. 90, 665–688 (2002)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods for optimization. Comput. Optim. Appl. 28, 149–171 (2004)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bergamaschi, L., Gondzio, J., Venturin, M., Zilli, G.: Inexact constraint preconditioners for linear systems arising in interior point methods. Comput. Optim. Appl. 36, 136–147 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Toh, K.C., Phoon, K.K., Chan, S.H.: Block preconditioners for symmetric indefinite linear systems. Int. J. Numer. Methods Eng. 60, 1361–1381 (2004)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Bergamaschi, L., Ferronato, M., Gambolati, G.: Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations. Comput. Meth. Appl. Mech. Eng. 196, 2647–2656 (2007)MATHCrossRefGoogle Scholar
  10. 10.
    Bergamaschi, L., Ferronato, M., Gambolati, G.: Mixed constraint preconditioners for the iterative solution of FE coupled consolidation equations. J. Comput. Phys. 227, 9885–9897 (2008)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Ferronato, M., Janna, C., Gambolati, G.: Mixed constraint preconditioning in computational contact mechanics. Comput. Methods Appl. Mech. Eng. 197, 3922–3931 (2008)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Benzi, M., Golub, G., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Mardal, K.A., Winther, R.: Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebr. Appl. 18, 1–40 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rozložník, M., Simoncini, V.: Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J. Math Anal. Appl. 24, 368–391 (2002)MATHCrossRefGoogle Scholar
  15. 15.
    Durazzi, C., Ruggiero, V.: Indefinitely preconditioned conjugate gradient method for large sparse equality and inequality constrained quadratic problems. Numer. Linear Algebr. Appl. 10, 673–688 (2003)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Janna, C., Ferronato, M., Gambolati, G.: Multilevel incomplete factorizations for the iterative solution of non-linear FE problems. Int. J. Numer. Methods Eng. 80, 651–670 (2009)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Benzi, M., Cullum, J.K., Tůma, M.: Robust approximate inverse preconditioning for the conjugate gradient method. SIAM J. Sci. Comput. 22, 1318–1332 (2000)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Saad, Y.: ILUM: a parallel multielimination ILU preconditioner for general sparse matrices. Technical Report CS-92-241, Department of Computer Science, University of Minnesota (1992)Google Scholar
  19. 19.
    Karypis, G., Kumar, V.: Parallel threshold-based ILU factorization. In: Proceedings of the 1997 ACM/IEEE Conference and Supercomputing, pp. 1–24. San Jose, CA (1997)Google Scholar
  20. 20.
    Benzi, M., Tůma, M.: A parallel solver for large-scale Markov chains. Appl. Numer. Math. 41, 135–153 (2002)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Hackbush, W.: Multigrid methods and applications. Springer, Berlin (1985)Google Scholar
  22. 22.
    Trottember, U., Oosterlee, C., Schüller, A.: Multigrid. Academic, London (2001)Google Scholar
  23. 23.
    Vaněk, P.: Acceleration of convergence of a two-level algorithm by smoothing transfer operator. Appl. Math. 37, 265–274 (1992)MathSciNetMATHGoogle Scholar
  24. 24.
    Vaněk, P., Mandel, J., Brezina, M.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems. Computing 56, 179–196 (1996)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Sala, M., Tuminaro, R.S.: A new Petrov–Galerkin smoothed aggregation preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput. 31, 143–166 (2008)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Chan, T.F., Mathew, T.P.: Domain decomposition algorithms. Acta Numer. 3, 61–143 (1994)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Cai, X.C., Sarkis, M.: A restrictive additive Schwarz preconditioner for general sparse linear systems. SIAM J. Sci. Comput. 21, 792–797 (1999)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Farhat, C., Lesoinne, M., Le Tallec, P., Pierson, K., Rixen, D.: FETI-DP: A dual-primal unified FETI method—part I: a faster alternative to the two-level FETI method. Int. J. Numer. Methods Eng. 50, 1523–1544 (2001)MATHCrossRefGoogle Scholar
  29. 29.
    Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers. Oxford University Press, Oxford (2005)MATHGoogle Scholar
  30. 30.
    Kolotilina, L.Y., Yeremin, A.Y.: Factorized sparse approximate inverse preconditioning. I. Theory. SIAM J. Mat. Anal. Appl. 14, 45–58 (1993)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Ferronato, M., Janna, C., Pini, G.: Parallel solution to ill-conditioned FE geomechanical problems. Int. J. Numer. Anal. Methods Geomech. 36, 422–437 (2012)CrossRefGoogle Scholar
  32. 32.
    Janna, C., Ferronato, M., Gambolati, G.: A Block FSAI-ILU parallel preconditioner for symmetric positive definite linear systems. SIAM J. Sci. Comput. 32, 2468–2484 (2010)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Janna, C., Ferronato, M.: Adaptive pattern research for block FSAI preconditioning. SIAM J. Sci. Comput. 33, 3357–3380 (2011)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    Freund, R.W., Nachtingal, N.M.: A new Krylov-subspace method for symmetric indefinite linear systems. In: Proceedings of the 14th IMACS World Congress on Computational and Applied Mathematics, pp. 1253–1256. (1994)Google Scholar
  35. 35.
    Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)MATHCrossRefGoogle Scholar
  36. 36.
    Ferronato, M., Gambolati, G., Teatini, P.: Ill-conditioning of finite element poroelasticity equations. Int. J. Solids Struct. 38, 5995–6014 (2001)MATHCrossRefGoogle Scholar
  37. 37.
    Ferronato, M., Pini, G., Gambolati, G.: The role of preconditioning in the solution to FE coupled consolidation equations by Krylov subspace methods. Int. J. Numer. Anal. Methods Geomech. 33, 405–423 (2009)CrossRefGoogle Scholar
  38. 38.
    Phoon, K.K., Toh, K.C., Chan, S.H., Lee, F.H.: An efficient diagonal preconditioner for finite element solution of Biot’s consolidation equations. Int. J. Numer. Methods Eng. 55, 377–400 (2002)MATHCrossRefGoogle Scholar
  39. 39.
    Chen, X., Toh, K.C., Phoon, K.K.: A modified SSOR preconditioner for sparse symmetric indefinite linear systems of equations. Int. J. Numer. Methods Eng. 65, 785–807 (2006)MATHCrossRefGoogle Scholar
  40. 40.
    Gambolati, G., Pini, G., Ferronato, M.: Scaling improves stability of preconditioned CG-like solvers for FE consolidation equations. Int. J. Numer. Anal. Methods Geomech. 27, 1043–1056 (2003)MATHCrossRefGoogle Scholar
  41. 41.
    Gambolati, G., Ferronato, M., Janna, C.: Preconditioners in computational geomechanics: a survey. Int. J. Numer. Anal. Methods Geomech. 35, 980–996 (2011)CrossRefGoogle Scholar
  42. 42.
    Ferronato, M., Bergamaschi, L., Gambolati, G.: Performance and robustness of block constraint preconditioners in FE coupled consolidation problems. Int. J. Numer. Methods Eng. 81, 381–402 (2010)MathSciNetMATHGoogle Scholar
  43. 43.
    Benzi, M., Simoncini, V.: On the eigenvalues of a class of saddle point matrices. Numer. Math. 103, 173–196 (2006)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Saad, Y.: ILUT: a dual threshold incomplete ILU factorization. Numer. Linear Algebr. Appl. 1, 387–402 (1994)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Li, N., Saad, Y., Chow, E.: Crout version of ILU for general sparse matrices. SIAM J. Sci. Comput. 25, 716–728 (2003)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Janna, C., Comerlati, A., Gambolati, G.: A comparison of projective and direct solvers for finite elements in elastostatics. Adv. Eng. Softw. 40, 675–685 (2009)MATHCrossRefGoogle Scholar
  47. 47.
    Huckle, T.: Approximate sparsity patterns for the inverse of a matrix and preconditioning. Appl. Numer. Math. 30, 291–303 (1999)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Chow, E.: A priori sparsity patterns for parallel sparse approximate inverse preconditioners. SIAM J. Sci. Comput. 21, 1804–1822 (2000)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Janna, C., Ferronato, M., Castelletto, N.: BFSAI-IC OpenMP implementation. (2011)
  50. 50.
    Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing. Paral. Comput. 26, 1519–1534 (2000)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Uçar, B., Aykanat, C.: Partitioning sparse matrices for parallel preconditioned iterative methods. SIAM J. Sci. Comput. 29, 1683–1709 (2007)MathSciNetMATHCrossRefGoogle Scholar
  52. 52.
    Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 1969 24th National Conference, pp. 157–172. (1969)Google Scholar
  53. 53.
    Vermeer, P.A., Verruijt, A.: An accuracy condition for consolidation by finite elements. Int. J. Numer. Anal. Methods Geomech. 5, 1–14 (1981)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Booker, J.R., Small, J.C.: An investigation of the stability of numerical solutions of Biot’s equations of consolidation. Int. J. Solids Struct. 11, 907–917 (1975)MATHCrossRefGoogle Scholar
  55. 55.
    Bergamaschi, L., Martinez, A.: FSAI-based parallel mixed constraint preconditioners for saddle point problems arising in geomechanics. J. Comput. Appl. Math. 236, 308–318 (2011)MathSciNetMATHCrossRefGoogle Scholar
  56. 56.
    Chan, S.H., Phoon, K.K., Lee, F.H.: A modified Jacobi preconditioner for solving ill-conditioned Biot’s consolidation equations using symmetric quasi-minimal residual method. Int. J. Numer. Anal. Methods Geomech. 25, 1001–1025 (2001)MATHCrossRefGoogle Scholar
  57. 57.
    Baù, D., Ferronato, M., Gambolati, G., Teatini, P.: Basin-scale compressibility of the Northern Adriatic by the radioactive marker technique. Géotechnique 52, 605–616 (2002)CrossRefGoogle Scholar
  58. 58.
    Teatini, P., Castelletto, N., Ferronato, M., Gambolati, G., Janna, C., Cairo, E., Marzorati, D., Colombo, D., Ferretti, A., Bagliani, A., Bottazzi, F.: Geomechanical response to seasonal gas storage in depleted reservoirs: a case study in the Po River basin, Italy. J. Geophys. Res. 116, F02002 (2011). doi: 10.1029/2010JF001793 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Carlo Janna
    • 1
  • Massimiliano Ferronato
    • 1
  • Giuseppe Gambolati
    • 1
  1. 1.Department Mathematical Models and Methods for Scientific ApplicationsUniversity of PadovaPaduaItaly

Personalised recommendations