Computational Geosciences

, Volume 15, Issue 3, pp 587–602 | Cite as

Multiscale mass conservative domain decomposition preconditioners for elliptic problems on irregular grids

  • Andreas Sandvin
  • Jan Martin Nordbotten
  • Ivar Aavatsmark
Open Access
Original Paper


Multiscale methods can in many cases be viewed as special types of domain decomposition preconditioners. The localisation approximations introduced within the multiscale framework are dependent upon both the heterogeneity of the reservoir and the structure of the computational grid. While previous works on multiscale control volume methods have focused on heterogeneous elliptic problems on regular Cartesian grids, we have tested the multiscale control volume formulations on two-dimensional elliptic problems involving heterogeneous media and irregular grid structures. Our study shows that the tangential flow approximation commonly used within multiscale methods is not suited for problems involving rough grids. We present a more robust mass conservative domain decomposition preconditioner for simulating flow in heterogeneous porous media on general grids.


Porous media Reservoir simulation Multilevel 


  1. 1.
    Aarnes, J.E.: On the use of a mixed multiscale finite element method for greater flexibility and increased speed or improved accuracy in reservoir simulation. Multiscale Model. Simul. 2(3), 421–439 (electronic) (2004)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Aavatsmark, I.: An introduction to multipoint flux approximations for quadrilateral grids. Comput. Geosci. 6(3-4), 405–432 (2002). Locally conservative numerical methods for flow in porous mediaMathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Arbogast, T.: Implementation of a locally conservative numerical subgrid upscaling scheme for two-phase Darcy flow. Comput. Geosci. 6(3-4), 453–481 (2002). Locally conservative numerical methods for flow in porous mediaMathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Axelsson, O.: Iterative Solution Methods. Cambridge University Press, New York (1994)MATHGoogle Scholar
  5. 5.
    Bunch, J.R.: Stability of methods for solving Toeplitz systems of equations. SIAM J. Sci. Statist. Comput. 6(2), 349–364 (1985)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chan, T.F.: Analysis of preconditioners for domain decomposition. SIAM J. Numer. Anal. 24(2), 382–390 (1987)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Chan, T.F.C., Mathew, T.P.: The interface probing technique in domain decomposition. SIAM J. Matrix Anal. Appl. 13(1), 212–238 (1992)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Christie, M., Blunt, M.: Tenth SPE comparative solution project: A comparison of upscaling techniques. SPE Reserv. Evalu. Eng. 4(4), 308–317 (2001)Google Scholar
  9. 9.
    Chu, J., Efendiev, Y., Ginting, V., Hou, T.Y.: Flow based oversampling technique for multiscale finite element methods. Adv. Water Resour. 31(4), 599–608 (2008)CrossRefGoogle Scholar
  10. 10.
    Durlofsky, L., Efendiev, Y., Ginting, V.: An adaptive local–global multiscale finite volume element method for two-phase flow simulations. Adv. Water Resour. 30(3), 576–588 (2007)CrossRefGoogle Scholar
  11. 11.
    Efendiev, Y., Ginting, V., Hou, T., Ewing, R.: Accurate multiscale finite element methods for two-phase flow simulations. J. Comput. Phys. 220(1), 155–174 (2006)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Farmer, C.L.: Upscaling: a review. Int. J. Numer. Methods Fluids 40(1–2), 63–78 (2002). ICFD Conference on Numerical Methods for Fluid Dynamics (Oxford, 2001)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Ginting, V.: Analysis of two-scale finite volume element method for elliptic problem. J. Numer. Math. 12(2), 119–141 (2004)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Golub, G.H., Mayers, D.: The use of preconditioning over irregular regions. In: Computing Methods in Applied Sciences and Engineering, VI (Versailles, 1983), pp. 3–14. North-Holland, Amsterdam (1984)Google Scholar
  15. 15.
    Graham, I.G., Lechner, P.O., Scheichl, R.: Domain decomposition for multiscale PDEs. Numer. Math. 106(4), 589–626 (2007)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Hajibeygi, H., Bonfigli, G., Hesse, M.A., Jenny, P.: Iterative multiscale finite-volume method. J. Comput. Phys. 227(19), 8604–8621 (2008)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Hesse, M.A., Mallison, B.T., Tchelepi, H.A.: Compact multiscale finite volume method for heterogeneous anisotropic elliptic equations. Multiscale Model. Simul. 7(2), 934–962 (2008)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Hou, T.Y., Wu, X.H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Hou, T.Y., Wu, X.H., Cai, Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comput. 68(227), 913–943 (1999)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Jenny, P., Lee, S.H., Tchelepi, H.A.: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187(1), 47–67 (2003)MATHCrossRefGoogle Scholar
  21. 21.
    Keilegavlen, E., Nordbotten, J.M., Aavatsmark, I.: Sufficient criteria are necessary for monotone control volume methods. Appl. Math. Lett. 22(8), 1178–1180 (2009)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Kippe, V., Aarnes, J.E., Lie, K.A.: A comparison of multiscale methods for elliptic problems in porous media flow. Comput. Geosci. 12(3), 377–398 (2008)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Lunati, I., Jenny, P.: Treating highly anisotropic subsurface flow with the multiscale finite-volume method. Multiscale Model. Simul. 6(1), 308–318 (electronic) (2007)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Mandel, J.: Balancing domain decomposition. Commun. Numer. Methods Eng. 9(3), 233–241 (1993)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Mandel, J., Sousedík, B.: Coarse spaces over the ages Arxiv e-prints (2009)Google Scholar
  26. 26.
    Nordbotten, J.M.: Adaptive variational multiscale methods for multiphase flow in porous media. Multiscale Model. Simul. 7(3), 1455–1473 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Nordbotten, J.M., Aavatsmark, I., Eigestad, G.T.: Monotonicity of control volume methods. Numer. Math. 106(2), 255–288 (2007)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Nordbotten, J.M., Bjørstad, P.E.: On the relationship between the multiscale finite-volume method and domain decomposition preconditioners. Comput. Geosci. 12(3), 367–376 (2008)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869 (1986)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Sandvin, A., Nordbotten, J.M., Aavatsmark, I.: A unified framework of upscaling and domain decomposition. In: XVIII Conference on Computational Methods in Water Resources (2010)Google Scholar
  31. 31.
    Smith, B.F., Bjørstad, P.E., Gropp, W.D.: Domain Decomposition. Cambridge University Press, Cambridge (1996). Parallel multilevel methods for elliptic partial differential equationsGoogle Scholar

Copyright information

© The Author(s) 2011

Authors and Affiliations

  • Andreas Sandvin
    • 1
  • Jan Martin Nordbotten
    • 2
  • Ivar Aavatsmark
    • 1
  1. 1.Centre for Integrated Petroleum ResearchUniversity of BergenBergenNorway
  2. 2.Department of MathematicsUniversity of BergenBergenNorway

Personalised recommendations