Computational Geosciences

, Volume 15, Issue 2, pp 239–250 | Cite as

Balance-aware covariance localisation for atmospheric and oceanic ensemble Kalman filters

  • Jeffrey David Kepert
Original Paper


Covariance localisation is used in many implementations of the ensemble Kalman filter (EnKF) but has been shown by Lorenc and by Kepert to significantly degrade the main balances in the atmosphere and ocean. Kepert recently introduced an improved form of localisation that reduced or eliminated this problem. This paper presents an extension to that approach, in which the background state is decomposed into balanced and unbalanced parts as part of the localisation. This new balance-aware localisation is shown to be a slight improvement on the earlier work of Kepert and a substantial improvement on the standard Schur-product localisation. Balance-aware localisation also enables the use of some sets of alternative analysis variables that do not work well with conventional localisation in the EnKF. It is shown using identical-twin experiments with a global spectral shallow-water model and no separate initialisation step that analysis to geopotential, streamfunction and velocity potential is slightly more accurate than is analysis to geopotential and the wind components. Analysis to unbalanced (instead of total) geopotential, streamfunction and velocity potential leads to slightly less accurate but significantly better balanced analyses than the other choices of analysis variables. If nonlinear normal modes initialisation is incorporated in the analysis cycling, then the conventional localisation becomes the most accurate method. However, initialisation may be undesirable or unavailable, and the comparison of system performance without localisation is useful since it helps improve understanding of the balance issues in EnKF-based assimilation systems.


Ensemble Kalman filter Covariance localisation Balance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J.L.: A local least squares framework for ensemble filtering. Mon. Weather Rev. 131, 634–642 (2003)CrossRefGoogle Scholar
  2. 2.
    Bourke, W.P.: An efficient, one-level, primitive-equation spectral model. Mon. Weather Rev. 100, 683–689 (1972)CrossRefGoogle Scholar
  3. 3.
    Cullen, M.J.P.: Four-dimensional variational data assimilation: a new formulation of the background-error covariance matrix based on a potential-vorticity representation. Q. J. R. Meteorol. Soc. 129, 2777–2796 (2003)CrossRefGoogle Scholar
  4. 4.
    Daley, R.: The analysis of synoptic scale divergence by a statistical interpolation procedure. Mon. Weather Rev. 113, 1066–1079 (1985)CrossRefGoogle Scholar
  5. 5.
    Daley, R.: The application of variational methods to initialisation on the sphere. In: Sasaki, Y.K. (ed.) Variational Methods in Geosciences, pp. 3–12. Elsevier, Amsterdam (1986)Google Scholar
  6. 6.
    Daley, R.: Atmospheric data analysis. Cambridge University Press, 457 pp. (1991)Google Scholar
  7. 7.
    Fillion, L., Tanguay, M., Ek, N., Pagé, C., Pellerin, S.: Balanced coupling between vertical motion and diabatic heating for variational data assimilation. In: Int. Symp. on Nowcasting and Very Short Range Forecasting. World Meteorological Organization, Toulouse, France. Available online at: (2005)
  8. 8.
    Fisher, M.: Background error covariance modeling. In: Proc. ECMWF Seminar on Recent Developments in Data Assimilation for Atmosphere and Ocean, Reading, UK, pp. 45–63 (2003)Google Scholar
  9. 9.
    Gaspari, G., Cohn, S.E.: Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125, 723–757 (1999)CrossRefGoogle Scholar
  10. 10.
    Hamill, T.M., Whitaker, J.S., Snyder, C.: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129, 2776–2790 (2001)CrossRefGoogle Scholar
  11. 11.
    Houtekamer, P.L., Mitchell, H.L.: Data assimilation using an ensemble Kalman filter technique. Mon. Weather Rev. 126, 796–811 (1998)CrossRefGoogle Scholar
  12. 12.
    Houtekamer, P.L., Mitchell, H.L.: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129, 123–137 (2001)CrossRefGoogle Scholar
  13. 13.
    Houtekamer, P.L., Mitchell, H.L.: Ensemble Kalman filtering. Q. J. R. Meteorol. Soc. 131, 3269–3290 (2005)CrossRefGoogle Scholar
  14. 14.
    Ide, K., Courtier, P., Ghil, M., Lorenc, A.C.: Unified notation for data assimilation: operational, sequential and variational. J. Meteorol. Soc. Jpn. 75, 181–189 (1997)Google Scholar
  15. 15.
    Kepert, J.D.: Covariance localisation and balance in an ensemble Kalman filter. Q. J. R. Meteorol. Soc. 135, 1157–1176 (2009)CrossRefGoogle Scholar
  16. 16.
    Lorenc, A.C.: A global three-dimensional multivariate statistical interpolation scheme. Mon. Weather Rev. 109, 701–721 (1981)CrossRefGoogle Scholar
  17. 17.
    Lorenc, A.C.: The potential of the ensemble Kalman filter for NWP—a comparison with 4D-Var. Q. J. R. Meteorol. Soc. 129, 3183–3203 (2003)CrossRefGoogle Scholar
  18. 18.
    Mitchell, H.L., Houtekamer, P.L., Pellerin, G.: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Weather Rev. 130, 2791–2808 (2002)CrossRefGoogle Scholar
  19. 19.
    Ott, E., Hunt, B.R., Szunyogh, I., Zimin, A.V., Kostelich, E.J., Corazza, M., Kalnay, E., Patil, D.J., Yorke, J.A.: A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A, 415–428 (2004)Google Scholar
  20. 20.
    Pagé, C., Fillion, L., Zwack, P.: Diagnosing summertime mesoscale vertical motion: implications for atmospheric data assimilation. Mon. Weather Rev. 135, 2076–2094 (2007)CrossRefGoogle Scholar
  21. 21.
    Parrish, D.F., Derber, J.C.: The national meteorological center’s spectral statistical-interpolation scheme. Mon. Weather Rev. 120, 1747–1763 (1992)CrossRefGoogle Scholar
  22. 22.
    Williamson, D.L., Daley, R., Schlatter, T.W.: The balance between mass and wind fields resulting from multivariate optimal interpolation. Mon. Weather Rev. 109, 2357–2376 (1981)CrossRefGoogle Scholar
  23. 23.
    Zupanski, M., Navonb, I.M., Zupanski, D.: The maximum likelihood ensemble filter as a non-differentiable minimization algorithm. Q. J. R. Meteorol. Soc. 134, 1039–1050 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Centre for Australian Weather and Climate Research, Bureau of MeteorologyMelbourneAustralia

Personalised recommendations